Любой направляющий вектор прямой 0А представляет собой нормальный вектор плоскости α, так как он ненулевой и лежит на прямой 0А, перпендикулярной к плоскости α. Таким образом, нахождение координат нормального вектора плоскости α (вектора, перпендикулярного этой плоскости) сводится к нахождению координат направляющего вектора прямой a.
Каноническое уравнение прямой, проходящей через две точки:
(x-x1)/(x2-x1) = (y-y1)/(y2-y1) = (z-z1)/(z2-z1).
Направляющий вектор этой прямой:
p{a1=x2-x1;a2=y2-y1;a3=z2-z1}.
В нашем случае точка М - середина отрезка 0А и имеет координаты М(-1;1,5;-4).
Каноническое уравнение прямой 0А: x/-2 = y/3 = z/-8. =>
Направляющий вектор прямой 0А: p{-2;3;-8} = n - вектор нормали искомой плоскости.
Уравнение искомой плоскости: -2(x+1)+3(y-1,5)-8(z+4) = 0 или
2x -3y + 8z + 38,5 = 0.
Проверим на точке М: 2·(-1) - 3·(1,5) + 8·(-4) + 38,5 = -2 - 4,5 - 32 = -38,5.
-38,5+38,5 = 0.
Можно проверить решение, найдя точки пересечения искомой плоскости с осями координат. Эти точки должны быть на равном расстоянии от начала координат и точки А. Точка пересечения искомой плоскости с осью 0y - Точка К(0;77/6;0). Точка пересечения искомой плоскости с осью 0х - Точка Р(-19,25;0;0). Точка пересечения искомой плоскости с осью 0z - Точка Т(0;0;-4,8125).
Две точки на сторонах параллелограмма соединили с тремя его вершинами так, как показано на рисунке. Докажите, что сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Объяснение:
Площадь треугольника с синими и белыми частями равна
S( бел часть)+S₁+S₂=1/2*S(паралл.) (*),
а площадь треугольника с синими и желтыми частями равна
S( бел часть)+S₃+S₄=1/2*S(паралл.)(**) .
Тк правые части (*) и(**) одинаковые , то
S( бел часть)+S₁+S₂=S( бел часть)+S₃+S₄ ⇒
S₁+S₂=S₃+S₄ , те сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Если концы одной из сторон параллелограмма соединить с произвольной точкой противоположной стороны , то площадь полученного треугольника равна половине площади параллелограмма.
Геометрическое место точек, равноудаленных от концов отрезка 0А - это плоскость, проведенная перпендикулярно отрезку 0А через его середину.
Уравнение искомой плоскости: 2x -3y + 8z + 38,5 = 0.
Объяснение:
Любой направляющий вектор прямой 0А представляет собой нормальный вектор плоскости α, так как он ненулевой и лежит на прямой 0А, перпендикулярной к плоскости α. Таким образом, нахождение координат нормального вектора плоскости α (вектора, перпендикулярного этой плоскости) сводится к нахождению координат направляющего вектора прямой a.
Каноническое уравнение прямой, проходящей через две точки:
(x-x1)/(x2-x1) = (y-y1)/(y2-y1) = (z-z1)/(z2-z1).
Направляющий вектор этой прямой:
p{a1=x2-x1;a2=y2-y1;a3=z2-z1}.
В нашем случае точка М - середина отрезка 0А и имеет координаты М(-1;1,5;-4).
Каноническое уравнение прямой 0А: x/-2 = y/3 = z/-8. =>
Направляющий вектор прямой 0А: p{-2;3;-8} = n - вектор нормали искомой плоскости.
Уравнение искомой плоскости: -2(x+1)+3(y-1,5)-8(z+4) = 0 или
2x -3y + 8z + 38,5 = 0.
Проверим на точке М: 2·(-1) - 3·(1,5) + 8·(-4) + 38,5 = -2 - 4,5 - 32 = -38,5.
-38,5+38,5 = 0.
Можно проверить решение, найдя точки пересечения искомой плоскости с осями координат. Эти точки должны быть на равном расстоянии от начала координат и точки А. Точка пересечения искомой плоскости с осью 0y - Точка К(0;77/6;0). Точка пересечения искомой плоскости с осью 0х - Точка Р(-19,25;0;0). Точка пересечения искомой плоскости с осью 0z - Точка Т(0;0;-4,8125).
Две точки на сторонах параллелограмма соединили с тремя его вершинами так, как показано на рисунке. Докажите, что сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Объяснение:
Площадь треугольника с синими и белыми частями равна
S( бел часть)+S₁+S₂=1/2*S(паралл.) (*),
а площадь треугольника с синими и желтыми частями равна
S( бел часть)+S₃+S₄=1/2*S(паралл.)(**) .
Тк правые части (*) и(**) одинаковые , то
S( бел часть)+S₁+S₂=S( бел часть)+S₃+S₄ ⇒
S₁+S₂=S₃+S₄ , те сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Если концы одной из сторон параллелограмма соединить с произвольной точкой противоположной стороны , то площадь полученного треугольника равна половине площади параллелограмма.
Доказательство.
S( треуг)=1/2*AD*BH =1/2*(AD*BH)=1/2*S( паралл.)