Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
По свойству параллельности прямых если одна из пары параллельных прямых параллельна третей прямой то и другая прямя из пары параллельна третей в нашем случае А║В и А║С ⇒В║С Расстояние между прямым В и С будет зависеть от расположения прямой С которая может находиться по разные стороны от прямой А на расстоянии 6дм тогда, при условии что расстояние от А до В равно 4дм, расстояние между В и С можт быть 1) 6-4=2 Дм при условии что В и С лежат по одну сторону от А 2) 6+4=10 Дм при условии что В и С лежат по разные стороны от А
Следовательно, √3*R²/4=D/6 => R²=2D√3/9.
R=√(2D√3)/3
По Пифагору квадрат диагонали вписанного квадрата равен
(2R)²=2а², где а - сторона квадрата.
а=2R/√2 = R√2, а площадь - S= а² =2R² .
Подставим найденное значение R, тогда
сторона вписанного квадрата:
а=√(2D√3/9)*√2=√(4D√3)/3.
площадь вписанного квадрата:
S=a²= 4D√3/9.
Расстояние между прямым В и С будет зависеть от расположения прямой С которая может находиться по разные стороны от прямой А на расстоянии 6дм тогда, при условии что расстояние от А до В равно 4дм,
расстояние между В и С можт быть
1) 6-4=2 Дм при условии что В и С лежат по одну сторону от А
2) 6+4=10 Дм при условии что В и С лежат по разные стороны от А