Дано:
S=320
h=8
Основания относятся друг к другу как 3:5
Найти: основания
1. Сначала напишем формулу вычисления площади трапеции
S=a+b×h/2
2. Основания можно выразить через коэффициент пропорциональности-x, следовательно получается:
3х и 5х
3. Подставим все значения и решим уравнение:
320=3х+5х×8/2
320=8х×8/2
320=64х/2
64х=320×2
64х=640
х=640/64
х=10
4. Теперь подставим вместо х числа и получим значения оснований:
3х=3×10=30
5х=5×10=50
Если подставить значения оснований и найти площадь получится 320
30+50×8/2=80×8/2=640/2=320
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Дано:
S=320
h=8
Основания относятся друг к другу как 3:5
Найти: основания
1. Сначала напишем формулу вычисления площади трапеции
S=a+b×h/2
2. Основания можно выразить через коэффициент пропорциональности-x, следовательно получается:
3х и 5х
3. Подставим все значения и решим уравнение:
320=3х+5х×8/2
320=8х×8/2
320=64х/2
64х=320×2
64х=640
х=640/64
х=10
4. Теперь подставим вместо х числа и получим значения оснований:
3х=3×10=30
5х=5×10=50
Если подставить значения оснований и найти площадь получится 320
30+50×8/2=80×8/2=640/2=320
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°