ам- медиана равнобедренного треугольника ABC. точка K лежит на его основании AB Так что отрезок МК перпендикулярен AB. Найдите длину стороны AB данного треугольника если BK равно 7.
Прямая призма. Sбок пов.=Росн*Н Pосн=4*с, с - сторона ромба диагонали ромба перпендикулярны и точкой пересечения делятся пополам. прямоугольный треугольник: катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы катет b =15 см (30:2) - (1/2) диагонали ромба гипотенуза с - сторона ромба по теореме Пифагора: c²=8²+15², c=17 см бОльшая диагональ призмы =50 см -наклонная. Большая наклонная имеет бОльшую проекцию, => рассмотрим прямоугольный треугольник: гипотенуза с=50 см - бОльшая диагональ призмы катет а= 30 см - бОльшая диагональ основания призмы катет H - высота призмы, найти. по теореме Пифагора: 50²=30²+H². H²=1600. H=40 см
Объяснение:
При вращении прямоугольника вокруг стороны 8 см получается цилиндр с высотой 8 см и радиусом основания 6 см.
Площадь полной поверхности цилиндра равна сумме площадей боковой поверхности и удвоенной площади основания.
Площадь боковой поверхности - произведение длины окружности основания и высоты цилиндра:
Sбок=L*Н; L=2πr=2π*6=12π, Н=8, Sбок=12π*8=96π см²;
Sосн=πr²=π*6²=36π; 2Sосн=72π см²;
Sпол.пов.=Sбок+2Sосн=96π+72π=168π см².
Объем цилиндра - произведение площади основания на высоту цилиндра.
Vцил.=Sосн*Н=36π*8=288π см³.
Sбок пов.=Росн*Н
Pосн=4*с, с - сторона ромба
диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
прямоугольный треугольник:
катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы
катет b =15 см (30:2) - (1/2) диагонали ромба
гипотенуза с - сторона ромба
по теореме Пифагора: c²=8²+15², c=17 см
бОльшая диагональ призмы =50 см -наклонная.
Большая наклонная имеет бОльшую проекцию, =>
рассмотрим прямоугольный треугольник:
гипотенуза с=50 см - бОльшая диагональ призмы
катет а= 30 см - бОльшая диагональ основания призмы
катет H - высота призмы, найти.
по теореме Пифагора:
50²=30²+H². H²=1600. H=40 см
Sбок.пов=4*17*40
Sбок.пов=2720 см²