Пусть ABC} — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABDи BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
A)По т.Менелая
(СД:ДА)•(АЕ:ЕК)•(ВК:ВС)=1
(, откуда получим ВК:ЕК=1, следовательно, ВК=ЕК.
2)Проверим ∆ АВС по т.Пифагора.
AB² > АС²+ВС² => угол С тупой.
По ф.Герона S(ABC)-√(14•7•6•1)=14√3
ВD- медиана и делит треугольник на два равных по площади.
S(BCD)=7√3
По другой формуле
S (ABC)=AC•BC•sinC:2
14√3=8•7•sinC:2 => sinC=√3/2 => тупой угол С=120°
(Можно подтвердить по т.косинусов – получим cos C= -1/2)
Из вершины А проведем высоту АН.
Высота тупоугольного треугольника, проведенная из острого угла, находится вне треугольника и пересекается с продолжением стороны, к которой проведена.
Угол АСН =180°-120°=60°( смежный углу АСВ)
НС=АС•cos60°=4
AH=AC•sin60°=4√3
Примем ВК=ЕК=х
В ∆ АНК
АК=АЕ+ЕК=7+х
КС=ВС-ВК=7-х
АК²=АН²+КН² =(7+х)²=(4√3)²+(4+7-х)²
49+14х+х²=121-22х+х²+48=>
ВК=х=10/3
СК=7-10/3=11/3
AK=7+10/3=31/3
Площадь DЕКС найдем из разности площадей ∆ АСК и ∆ АЕD.
S(AKC)=AH•CK:2=(4√3•11/3):2=22/√3 =>
sinCAK=22/√3:(8•31/6)=11√3/62
S(AED)=AD•AE•sinA:2=77√3/31
S(CDEK)= (ед. площади)