2. треугольник равнобедренный. значит можно этот треугольник рассмотреть как 2 прямоугольных. треугольник равнобедренный( гипотенуза 5, один из катетов равен 3) тогда по т. Пифагора высота равна 4.
остальные высоты можно найти через площадь. площадь равна 1/2*4*6=12
1/2*h1*5=12, h1 = 4,8. вторая высота такая же т.к. сторона, к которой проведена высота, такая же.
4.площадь прямоугольного треугольника вычисляется по формуле S = (a*b)/2. a, b - соответственно катеты. a/b=7/12 по условию задачи. выражаем b через a: b=(a*12)/7. Подставляем в формулу для площади: S=(a*a*12)/7 168=(a*a*12)/7 a*a=168*7/6=196 a=14. b=14*12/7=24. ответ: 14 и 24
5. Пусть
a-верхнее основание
b-нижнее
h-высота
135-90= 45 градусов
треуг CDH -равнобедренный тк угол CHD-прямой
то BC=HD=6
то AD=AH+HD=6+6=12
S=(a+b)/2*h
S=(6+12)/2*6=54
ответ : 54
7.
сумма противоположных сторон описанного четырехугольника равны
Т к у ромба все стороны раны, и известен периметр, найдем длины сторон: АВ=ВС=СК=АК=16/4=4см. Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)
1. х-одна сторона, тогда 3х - вторая сторона
75=3х*х
75=3*х^2
х^2=25
x=5
ответ : 5 см, 15 см
2. треугольник равнобедренный. значит можно этот треугольник рассмотреть как 2 прямоугольных. треугольник равнобедренный( гипотенуза 5, один из катетов равен 3) тогда по т. Пифагора высота равна 4.
остальные высоты можно найти через площадь. площадь равна 1/2*4*6=12
1/2*h1*5=12, h1 = 4,8. вторая высота такая же т.к. сторона, к которой проведена высота, такая же.
ответ : 4 см, 4,8см, 4,8 см
3. 8/а=5/в=7/с=1/4
8\а=1/4
а=32
5/в=1/4
в=20
7/с=1/4
с=28
Р=32+20+28=80
площадь находим через формулу Герона
S= sqrt {40*8*20*12}=sqrt{76800}=10*2*2*2*2sqrt{3}=160sqrt{3}
ответ : 80 см, 160sqrt{3} см
4.площадь прямоугольного треугольника вычисляется по формуле S = (a*b)/2.
a, b - соответственно катеты.
a/b=7/12 по условию задачи.
выражаем b через a: b=(a*12)/7.
Подставляем в формулу для площади:
S=(a*a*12)/7
168=(a*a*12)/7
a*a=168*7/6=196
a=14.
b=14*12/7=24.
ответ: 14 и 24
5. Пусть
a-верхнее основание
b-нижнее
h-высота
135-90= 45 градусов
треуг CDH -равнобедренный тк угол CHD-прямой
то BC=HD=6
то AD=AH+HD=6+6=12
S=(a+b)/2*h
S=(6+12)/2*6=54
ответ : 54
7.
сумма противоположных сторон описанного четырехугольника равны
АВСД -четырехугольник
АВ+СД=ВС+АД=12
r -радиус вписанной окр. с центром т.О
Sаод=0,5*r*АД
Sаов=0,5*r*АВ
Sвос=0,5*r*ВС
Sсод=0,5*r*СД
Sавсд=Sаод+Sаов+Sвос+Sсод=0,5*r(АД+АВ+ВС+СД)=0,5*5(12+12)=60
ответ : 60
8.
Сначала нужно доказать что треугольники подобны..
Угол C общ
угол B = углу A1B1C ( по фалесу) ,
значит треугольники подобны по двум углам.
21,5/9*7150,5/9=16 целых 6,5/9 см -A1C
18/9*7=14 см - В1С
10/9*7=70/9=7 целых 7/9 см А1В1
P= 16 целых 6,5/9 +14+ 7 целых 7/9=37 целых 13,5/9=38 целых 4,5/9=38,5
ответ: 38,5 см
Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)