Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
В равнобедренном треугольнике по крайней мере два равных угла. Сумма всех углов - 180°. Если угол в 62° - "единственный в своем роде", то каждый из двух других равных углов будет равен:
(180° - 62°) : 2 = 118° : 2 = 59°.
Если же существуют два таких угла, то оставшийся угол равен:
180° - 62° * 2 = 180° - 124° = 56° градусов.
Оба исхода имеют место быть.
Углы искомого треугольника: (59°; 59°; 62) или (56°; 62°; 62°).
б). Один из углов равен 98°.
В равнобедренном треугольнике не может быть два угла по 98°, так как 98° * 2 = 196° > 180°.
Если угол в 98° единственен, то каждый из оставшихся углов равен:
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
а). (59°; 59°; 62) или (56°; 62°; 62°) ;
б). (41°; 41°; 98°) .
а). Один из углов равен 62°.
В равнобедренном треугольнике по крайней мере два равных угла. Сумма всех углов - 180°. Если угол в 62° - "единственный в своем роде", то каждый из двух других равных углов будет равен:
(180° - 62°) : 2 = 118° : 2 = 59°.
Если же существуют два таких угла, то оставшийся угол равен:
180° - 62° * 2 = 180° - 124° = 56° градусов.
Оба исхода имеют место быть.
Углы искомого треугольника: (59°; 59°; 62) или (56°; 62°; 62°).
б). Один из углов равен 98°.
В равнобедренном треугольнике не может быть два угла по 98°, так как 98° * 2 = 196° > 180°.
Если угол в 98° единственен, то каждый из оставшихся углов равен:
(180° - 98°) : 2 = 82° : 2 = 41°.
Углы искомого треугольника: (41°; 41°; 98°).
Задача решена!