Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его состоит в преобразовании квадратов, построенных на катетах, в равновеликие треугольники, составляющие вместе квадрат гипотенузы.
Рис. 10. ABC сдвигаем, как показано стрелкой, и он занимает положение KDN. Оставшаяся часть фигуры AKDCB равновелика площади квадрата AKDC – это параллелограмм AKNB.
Координаты середины отрезка ВС (точки М) находятся по формуле:
Xm = (Xc + Xb)/2, Ym = (Yc + Yb)/2. Отсюда
Xc=2*Xm-Xb или 6-(-2)=8;
Yc=2*Ym-Yb или -2-4 = -6. Значит С(8;-6).
2) В(4;-3) К(1;5)
Координаты середины отрезка ВМ (точки К) находятся по формуле:
Xk = (Xm + Xb)/2, Yk = (Ym + Yb)/2. Отсюда
Xm=2*Xk-Xb или 2-4=-2;
Ym=2*Yk-Yb или 10-(-3) = 13. Значит М(-2;13).
Тогда координаты точки С:
Xc=2*Xm-Xb или -4-4=-8;
Yc=2*Ym-Yb или 26-(-3) = 29. Значит С(-8;29).
ответ: 1) С(8;-6) 2) С(-8;29)
Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b²
Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его состоит в преобразовании квадратов, построенных на катетах, в равновеликие треугольники, составляющие вместе квадрат гипотенузы.
Рис. 10. ABC сдвигаем, как показано стрелкой, и он занимает положение KDN. Оставшаяся часть фигуры AKDCB равновелика площади квадрата AKDC – это параллелограмм AKNB.