Начнём с того, что cos 70 градусов число иррациональное и равно приблизительно 0.34 Из определения косинуса следует, что Cos 70 = AH/AB => AB = AH/cos 70 = приблизительно 56 см. Из треугольника ABH по теореме Пифагора находим BH => BH^2 = AB^2-AH^2= 53 см. Из подобия прямоугольных треугольников следует, что высота BH равна среднему геометрическому проекций катеров на гипотенузу, т.е BH = корень квадратный из AH * HC => HC = 147 см. Гипотенуза AC = AH+HC=166 см. Находим площадь данного треугольника: S= (53*166)/2=4400 см^2. Все величины являются приблизительными
Прямые А₁С и DD₁ скрещивающиеся, так как DD₁ лежит в плоскости (АА₁D₁), прямая А₁С пересекает эту плоскость в точке А₁, не лежащей на прямой DD₁.
Расстояние между скрещивающимися прямыми - это расстояние между одной прямой и плоскостью, содержащей другую прямую.
Прямая А₁С лежит в плоскости диагонального сечения АА₁С₁С.
DD₁ ║ AA₁ как противоположные стороны квадрата, АА₁ лежит в плоскости (АА₁С₁), значит DD₁ ║ (AA₁C₁) по признаку параллельности прямой и плоскости.
Расстояние между прямой и плоскостью, которой эта прямая параллельна, - это расстояние от любой точки прямой до плоскости, т.е. длина перпендикуляра, проведенного из любой точки прямой к плоскости.
Cos 70 = AH/AB => AB = AH/cos 70 =
приблизительно 56 см. Из треугольника ABH по теореме Пифагора находим BH => BH^2 =
AB^2-AH^2= 53 см. Из подобия прямоугольных треугольников следует, что высота BH равна среднему геометрическому проекций катеров на гипотенузу, т.е BH = корень квадратный из AH * HC => HC = 147 см. Гипотенуза AC =
AH+HC=166 см. Находим площадь данного треугольника: S= (53*166)/2=4400 см^2. Все величины являются приблизительными
ответ:ответ: а√2/2
Объяснение:
Прямые А₁С и DD₁ скрещивающиеся, так как DD₁ лежит в плоскости (АА₁D₁), прямая А₁С пересекает эту плоскость в точке А₁, не лежащей на прямой DD₁.
Расстояние между скрещивающимися прямыми - это расстояние между одной прямой и плоскостью, содержащей другую прямую.
Прямая А₁С лежит в плоскости диагонального сечения АА₁С₁С.
DD₁ ║ AA₁ как противоположные стороны квадрата, АА₁ лежит в плоскости (АА₁С₁), значит DD₁ ║ (AA₁C₁) по признаку параллельности прямой и плоскости.
Расстояние между прямой и плоскостью, которой эта прямая параллельна, - это расстояние от любой точки прямой до плоскости, т.е. длина перпендикуляра, проведенного из любой точки прямой к плоскости.
АА₁ ⊥ (АВС), ⇒ АА₁ ⊥ BD,
АС ⊥ BD как диагонали квадрата, тогда
BD ⊥ (AA₁C₁), т.е. DО - искомое расстояние.
BD = a√2 как диагональ квадрата,
ВО = 1/2 BD = a√2/2.
Объяснение: