На катетах прямоугольного треугольника, как на диаметрах, построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.
————————
ответ: 2,4 (ед. длины)
Объяснение:
Пусть в треугольника АВС катеты АС=4, ВС=3, СН - общая хорда.
По т.Пифагора ( или из отношения катетов 3:4 - «египетский треугольник) находим гипотенузу АВ=5.
Хорда СН перпендикулярна гипотенузе, т.к. вписанные углы АНС и ВНС опираются на диаметры. Следовательно, СН - высота треугольника АВС. Её длину легко найти из площади ∆ АВС.
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
На катетах прямоугольного треугольника, как на диаметрах, построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.
————————
ответ: 2,4 (ед. длины)
Объяснение:
Пусть в треугольника АВС катеты АС=4, ВС=3, СН - общая хорда.
По т.Пифагора ( или из отношения катетов 3:4 - «египетский треугольник) находим гипотенузу АВ=5.
Хорда СН перпендикулярна гипотенузе, т.к. вписанные углы АНС и ВНС опираются на диаметры. Следовательно, СН - высота треугольника АВС. Её длину легко найти из площади ∆ АВС.
Ѕ(АВС)=0,5•АС•ВС=4•3•1/2=6 ⇒
СН=2Ѕ:АВ=12:5=2,4 (ед. длины)
или:
СН=АС•sin∠A
sin∠A=BC:AB=3/5=0,6
CH=4•0,6=2,4 (ед. длины)
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).