Есть треугольник ABC. Проводим высоту BK с вершины угла 90°. Поскольку BK высота, то она будет перпендикулярна к гипотенузе на которую она проведена. Следовательно рассматриваем получившийся треугольник BKC в котором угол KBC 50° и угол BKC 90°. Сума всех углов треугольника равна 180°, отсюда следует что угол C равен 180 - (50+90)= 40°
Так же находим угол A, только через треугольник AKB. Поскольку высота BK проведена с вершины прямого угла и образовала с катетом BC угол 50°, то угол с катетом AB будет равен 40° (90°-50°). Отсюда угол A равен 180°-(90+40°) = 50°.
Есть треугольник ABC. Проводим высоту BK с вершины угла 90°. Поскольку BK высота, то она будет перпендикулярна к гипотенузе на которую она проведена. Следовательно рассматриваем получившийся треугольник BKC в котором угол KBC 50° и угол BKC 90°. Сума всех углов треугольника равна 180°, отсюда следует что угол C равен 180 - (50+90)= 40°
Так же находим угол A, только через треугольник AKB. Поскольку высота BK проведена с вершины прямого угла и образовала с катетом BC угол 50°, то угол с катетом AB будет равен 40° (90°-50°). Отсюда угол A равен 180°-(90+40°) = 50°.
28
Объяснение:
Тк МК параллельна ВС и она явл средней линией треуг, то она равна половине ВС, т.е МК = 5
Периметр акм = сумме всех сторон этого треугольника, а тк одна из сторон 5, то сумма АК и АМ равна 13.
ТК МК сред линия, то АК=КВ и АМ=МС, тут уже не важно чему равно АМ и АК, ответ будет одинаковый в любом случае. Периметр кбсм равен 18+10 =28
Объяснение :
периметр кбсм равен МК +КВ +МС + ВС
но, мы уже выяснили, что АК=КВ и МС = АМ. Тогда можно записать так периметр кбсм равен МК+АК+АМ+ВС
ВС это 10
Сумма МК, АК, АМ это как раз таки периметр маленького треугольника =18
Вот откуда 18+10