В параллелограмме АВСД ∠А = 30°, АД = 16 см, М - середина ВС, АМ пересекает ВД в точке N, CN пересекает АВ в точке Р, АР = 6 см. Найдите площадь параллелограмма.
Центр окружности, описанной вокруг треугольника, находится в точке пересечения срединных перпендикуляров. Центр окружности, вписанной в треугольник, находится в точке пересечения его биссектрис. Так как срединные перпендикуляры правильного треугольника - его высоты и биссектрисы, центры описанной и вписанной окружности совпадают. Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. Радиус вписанной равен половине радиуса описанной окружности, т.е. 1/3 высоты ( медианы, биссектрисы). Высота правильного треугольника равна (а√3):2, радиус вписанной окружности r=[(а√3):2]:3, где а - сторона треугольника. ⇒ r=[6√3•√3):2]:3=18:6=3 Площадь круга находят по формуле: S=π•r² S=π•3²=9π
В параллелограмме АВСД ∠А = 30°, АД = 16 см, М - середина ВС, АМ пересекает ВД в точке N, CN пересекает АВ в точке Р, АР = 6 см. Найдите площадь параллелограмма.
============================================================
ВМ = МС = ВМ/2 = 16/2 = 8 смΔBNM подобен ΔAND по двум углам: ∠ВМN = ∠NAD - как накрест лежащие при ВС || AD и секущей АМ, ∠BNM = ∠AND - как вертикальные. Составим отношения сходственных сторон:MN/AN = BN/ND = BM/AD = 8/16 = 1/2ΔBPN подобен ΔCDN аналогично по двум угламРN/NC = BN/BD = BP/CD = 1/2 ⇒ CD = 2•BPТак АВ = CD, значит, ВР = РА = 6 смНаходим искомую площадь параллелограмма АBCD:S abcd = AB • CD • sin∠A = 12 • 16 • sin30° = 96 см²ОТВЕТ: S abcd = 96 см²Центр окружности, вписанной в треугольник, находится в точке пересечения его биссектрис.
Так как срединные перпендикуляры правильного треугольника - его высоты и биссектрисы, центры описанной и вписанной окружности совпадают.
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты.
Радиус вписанной равен половине радиуса описанной окружности, т.е. 1/3 высоты ( медианы, биссектрисы).
Высота правильного треугольника равна (а√3):2, радиус вписанной окружности r=[(а√3):2]:3, где а - сторона треугольника. ⇒
r=[6√3•√3):2]:3=18:6=3
Площадь круга находят по формуле:
S=π•r²
S=π•3²=9π