Ато учительница собирается поставить 2. А у моего папы день рождения! не Хочу его расстраивать!В прямоугольнике АВСД с шириной 10см, биссектриса угла <А делит сторону ВС на два равных отрезка.Найдите периметр прямоугольника
Если хорда перпендикулярна диаметру, значит она точкой пересечения делится пополам, т.е. на отрезки по 15см. Диаметр-это то же хорда разделеная в 0тношении 1:9. Пусть 1 часть диаметра равна х, тогда длина всего диаметра равна х+9х=10х.
Если хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды (теорема об отрезках пересекающихся хорд.
х*9х=15*15,
9х(в квадр)=225,
х(в квадр)=25,
х=-5 - не является решением задачи
х=5
5*10=50(см)-длина диаметра окружности.
Объяснение:
Если хорда перпендикулярна диаметру, значит она точкой пересечения делится пополам, т.е. на отрезки по 15см. Диаметр-это то же хорда разделеная в 0тношении 1:9. Пусть 1 часть диаметра равна х, тогда длина всего диаметра равна х+9х=10х.
Если хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды (теорема об отрезках пересекающихся хорд.
a) K, L, M ∈ α; α║(SBC)
KL║BS; KM║BC; ML║CS как линии пересечения двух параллельных плоскостей с одной общей.
SH⊥(ABC); AT⊥BC; H∈AT как центр правильного треугольника лежащий на медиане. AH:HT=2:1 по свойству пересечения медиан.
LU⊥KM ⇒ KU=UM ⇒ U∈AT ⇒ LU⊂(AST) ⇒ LU∩SH
Рассмотрим плоскость AST.
LU║ST как линии пересечения двух параллельных плоскостей с (AST).
AK:KB=AL:LS=5:1 по теореме о пропорциональных отрезках.
AU:UT=AL:LS по теореме о пропорциональных отрезках.
Как уже известно AH:HT=2:1. Пусть AU=5x; UT=x ⇒AT=6x ⇒ AH=4x; HT=2x ⇒ HU=2x-x=x.
ΔSHT~ΔRHU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит SH:RH=HT:HU=2:1. Пусть SH=2y; RH=y ⇒ SR=2y-y=y ⇒ SR=y=RH
То есть плоскость делит высоту пополам.
б) AT=AB*sin 60°=(15+3)*√3/2=9√3.
ΔAST~ΔALU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит AL:AS=LU:ST=6:5.
HT=1/3 *9√3=3√3 т.к. AH:HT=2:1
SH=13 ⇒ ST=√(169+27)=14 ⇒ LU=5/6 *14=35/3.
ΔAKM~ΔABC по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит KM:BC=AK:AB=5:6 ⇒ KM=5/6 *18=15.
Как было указано в начале LU⊥KM ⇒ S=1/2* 15*35/3=175/2=87,5
ответ: 87,5.