Центр шара лежит в точке, равноудалённой от сторон треугольника, образуя вместе с вершинами треугольника треугольную пирамиду с равными апофемами. апофемы равны, значит основание высоты пирамиды лежит в центре вписанной в основание пирамиды окружности. площадь основания можно вычислить по формуле герона: s=√(p(p-a)(p-b)(p- где р=(a+b+c)/2. подставив числовые значения a=13, b=14 и с=15 получим s=84 см. радиус вписанной окружности: r=s/p=2s/(a+b+c). r=2·84/(13+14+15)=4 см. высота пирамиды, проведённая к данному треугольнику - это расстояние от центра шара до треугольника. в прямоугольном треугольнике, образованном высотой пирамиды, апофемой и найденным радиусом, высота по теореме пифагора равна: h=√(l²-r²), где l- апофема пирамиды (равна радиусу шара). h=√(5²-4²)=3 см - это ответ.
Если осевым сечением является квадрат, то высота цилиндра равна его диаметру. По теореме Пифагора находим высоту и диаметр(берем их за х): 2х^2=36*2х^2 = 36 х=6.Боковая поверхность цилиндра - это прямоугольник, стороны которого - высота и длина круга(основания), а площадь боковой поверхности - это площадь этого прямоугольника.Длина круга равна 2pi*R = 6piВысота равна 6, следует Площадь боковой поверхности равна 36pi.Объем цилиндра равен произведению площади основания на высоту.Основание цилиндра - круг. Площадь круга - пи*R^2, следует Объем цилиндра равен пи*9*6 = 54pi.