Треугольники САВ и CDE равны, значит равны и их высоты, следовательно, точка F равноудалена от сторон угла С и лежит на биссектрисе <C. Треугольники AFE и DFB подобны по двум углам (<AEF=<EBD как соответственные углы равных треугольников САВ и CDE, а <AFE=<DFB как вертикальные. Но соответственные стороны этих треугольников равны (АЕ=DB - дано), значит треугольники AFE и DFB равны и AF=DF. Площади треугольников с равной высотой относятся как стороны, на которые опущены эти высоты. То есть Scfd/Sdfb=1/3. Тогда Scafd/Sdfb=2/3. Sabc=Ssafd+Sdfb=2х+3х или 5х=1 (дано). х=1/5=0,2. И Ssafd=2*0,2=0,4. ответ: Scafd=0,4.
Хо = (6+0)/2 = 3.
Уо = (2+3)/2 = 2,5.
2. Координаты вершины С:
Хс = 2Хо - Ха = 2*3 - 1 = 5.
Ус = 2Уо - Уа = 2*2,5 - 1 = 4.
3. Уравнения диагоналей.
А(1; 1), С(5; 4).
АС: (х - 1)/(5-1) = (у - 1)/(4 - 1).
АС: (х - 1)/4= (у - 1)/3 каноническое уравнение.
3х - 3 = 4у - 4
3х - 4у + 1 = 0 общее уравнение.
у = (3/4)х + (1/4) уравнение с коэффициентом.
В(6,2), Д(0,3).
ВД = (х - 6)/(0 - 6) = (у - 2) /( 3 - 2 )
ВД: 3 Х - 4 У + 1 = 0
у = 0,1666667 х + 3.
4. Является ли четырехугольник ABCD ромбом? Нет.
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √26 ≈ 5,099019514.
BC = √((Хc-Хв)²+(Ус-Ув)²) = √5 ≈ 2,236067977.
Треугольники AFE и DFB подобны по двум углам (<AEF=<EBD как
соответственные углы равных треугольников САВ и CDE, а <AFE=<DFB как вертикальные. Но соответственные стороны этих треугольников равны (АЕ=DB - дано), значит треугольники AFE и DFB равны и AF=DF.
Площади треугольников с равной высотой относятся как стороны, на которые опущены эти высоты. То есть Scfd/Sdfb=1/3. Тогда Scafd/Sdfb=2/3.
Sabc=Ssafd+Sdfb=2х+3х или 5х=1 (дано).
х=1/5=0,2. И Ssafd=2*0,2=0,4.
ответ: Scafd=0,4.