В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Ol3ksa
Ol3ksa
06.09.2021 10:54 •  Геометрия

АВ – диаметр окружности с центром О. Найдите координаты центра окружности и длину диаметра, если А (6;-2) и В (-2;-8). ​

Показать ответ
Ответ:
Nastya20081505
Nastya20081505
18.11.2021 07:25
Из условия: 
1) основание - квадрат
2) проекция стороны на основание -прямоугольный треугольник
3) в разрезе пирамиды по углам и вершине тоже треугольник

решение:
треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60°
проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны  по 45 градусов )
это и будет ответом - (4/ tg60°) / sin 45°
0,0(0 оценок)
Ответ:
адай6
адай6
03.01.2020 23:02
1  В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. 
Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d,  уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°.
2  В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD (\angle1= \angle2=30к; \angle1= \angle3; \Rightarrow \angle2= \angle3=30к;DH \perp CPDH= \frac{1}{2}CD=\frac{1}{2}*10=5 как катет лежащий против угла 30 в треугольнике CHD.  
BM \perp CPBM= \frac{1}{2}BC=\frac{1}{2}*16=8 как катет лежащий против угла 30 в треугольнике BMC. 
3  В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом \angle4= \angle3;\angle1: \angle3=1:2;
\angle1=30к;\angle3=60к; Тогда в ромбе \angle A =\angle C=120к; \angle B =\angle D=60к;
4  треугольник AMD равносторонний, \angle MAD=60к;, тогда 
\angle MAB=30к; Треугольник BAM равнобедренный, АВ=АМ, тогда \angle AMB= \frac{1}{2}(180-30)=75к;
5  \angle1= \angle2=; \angle1= \angle3; \Rightarrow \angle2= \angle3, треугольник MCD равнобедренный, MD=CD=3,  \angle3=\angle4,  \angle2=\angle5, как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4.
Тогда ВС=AD=7, АВ=CD=3, периметр P=2*(7+3)=20.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота