В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Alymov671
Alymov671
24.02.2021 16:20 •  Геометрия

Ав кесіндісінің ұштары a және b параллель түзулерінде жатыр. осы кесіндінің ортасын o нүктесі арқылы өтетін түзу a және b түзулерін c және d нүктелерінде қиып өтеді. co=od екенін дәлелдеңдер​.

сосын тагы 10 жиберем

Показать ответ
Ответ:
simpson12345
simpson12345
11.12.2020 16:50

Если еще не поздно)

Дано: окружность, т.О — центр, т.А ∉ окружности, АВ и АС — касательные, т.В и т.С — точки касания, ∠ВАС= 50°.

Найти: ∠ВОС.

Решение.

1) Проведём радиусы ОВ и ОС и отрезок АО.

2) Вспоминаем свойства касательной:

– касательная к окружности перпендикулярна к радиусу, проведенному в точку касания;

– отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

3) Исходя из вышеуказанных свойств, мы видим, что ОВ⟂АВ, ОС⟂АС и АВ=АС.

4) Рассмотрим ΔOBA и ΔОСА:

АВ=АС, ОВ=ОС (как радиусы), ОА — общая сторона. Значит, ΔОВА=ΔОСА по трём сторонам.

5) Поскольку ΔОВА=ΔОСА, то их соответственные углы равны.

ОВ⟂АВ, ОС⟂АС => треугольники ОВА и ОСА прямоугольные, ∠ОВА=90°, ∠ОСА=90°.

Кроме того, ∠ОАВ= ∠ОАС= ½∠ВАС= 50°÷2= 25°.

6) ∠АОВ=∠АОС= 90°–25°= 65° (в прямоугольном треугольнике сумма острых углов равна 90°)

7) ∠ВОС= 2∠АОВ= 65°×2= 130°.

ответ: 130°.


Из точки А к окружности с центром в точке О проведены две касательной к данной окружности (точки кас
0,0(0 оценок)
Ответ:
Hwasooyeon
Hwasooyeon
11.12.2020 16:50

Если еще не поздно)

Дано: окружность, т.О — центр, т.А ∉ окружности, АВ и АС — касательные, т.В и т.С — точки касания, ∠ВАС= 50°.

Найти: ∠ВОС.

Решение.

1) Проведём радиусы ОВ и ОС и отрезок АО.

2) Вспоминаем свойства касательной:

– касательная к окружности перпендикулярна к радиусу, проведенному в точку касания;

– отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

3) Исходя из вышеуказанных свойств, мы видим, что ОВ⟂АВ, ОС⟂АС и АВ=АС.

4) Рассмотрим ΔOBA и ΔОСА:

АВ=АС, ОВ=ОС (как радиусы), ОА — общая сторона. Значит, ΔОВА=ΔОСА по трём сторонам.

5) Поскольку ΔОВА=ΔОСА, то их соответственные углы равны.

ОВ⟂АВ, ОС⟂АС => треугольники ОВА и ОСА прямоугольные, ∠ОВА=90°, ∠ОСА=90°.

Кроме того, ∠ОАВ= ∠ОАС= ½∠ВАС= 50°÷2= 25°.

6) ∠АОВ=∠АОС= 90°–25°= 65° (в прямоугольном треугольнике сумма острых углов равна 90°)

7) ∠ВОС= 2∠АОВ= 65°×2= 130°.

ответ: 130°.


Из точки А к окружности с центром в точке О проведены две касательной к данной окружности (точки кас
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота