Ну, тоды поставим точку в середине стороны АВ, и назовём её незатейливой буквой Е. Построим отрезок ЕС. А также, если ещё не провели, то проведём отрезок AF. И ещё строим отрезок EF. И видим, что тремя отрезками наш квадрат разбился на четыре одинаковых треугольника, а они все четыре одинаковые, потому что каждый имеет прямой угол, катет 2 см, и катет 1 см. Итак, осталось только понять,что площадь четырёхугольника ABCF составляет три треугольника. Видишь на чертеже? Площадь квадрата мы умеем находить, это будет 2*2 = 4 см2. А значит площадь четырёхугольника будет 3/4 от 4 = 3 см2. Андерстенд?
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°