Т.к. сумма углов выпуклого четырёхугольника равна 360°
Из этого следует:
130° + 55° + 45° + 125° = 345°
Если сумма углов меньше или больше 360° ⇒ Это не четырёхугольник
Значит нет такого четырёхугольника
б)15
Объяснение:
(n-2)*180=2340
n=15
2. а)Нет . Каждая диагональ делиться на два равных треугольника
б)Нет. Противолежащие стороны равно
в)Да. Противолежащие < равно
г)Да. Диагонали точкой пересечения делится на попалам AC=ВD
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
- первая 5*2=10(м)
-вторая 6*2=12(м)
Отсюда:
периметр треугольника равен: 14+10+12=36(м)
4.высота , проведенная к основанию является медианой ( треугольник равнобедренный ) ⇒ медиана , проведенная к боковой стороне делит ее в отношении 2 : 1 ⇒ меньший отрезок высоты равен 4 , а вся высота 12
В правильной пирамиде ЕАВС боковые грани - прямоугольные равнобедренные треугольники с катетами 7√2 см, значит гипотенузы в них (стороны основания пирамиды) равны 7√2·√2=14 см. В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС. В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см. В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см. Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см. В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см. Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу: СМ·ЕО/2=ЕС·МК/2, МК=СМ·ЕО/ЕС, МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см. МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны. ответ: 7 см.
1 Нет, не существует.
Объяснение:
Т.к. сумма углов выпуклого четырёхугольника равна 360°
Из этого следует:
130° + 55° + 45° + 125° = 345°
Если сумма углов меньше или больше 360° ⇒ Это не четырёхугольник
Значит нет такого четырёхугольника
б)15
Объяснение:
(n-2)*180=2340
n=15
2. а)Нет . Каждая диагональ делиться на два равных треугольника
б)Нет. Противолежащие стороны равно
в)Да. Противолежащие < равно
г)Да. Диагонали точкой пересечения делится на попалам AC=ВD
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
- первая 5*2=10(м)
-вторая 6*2=12(м)
Отсюда:
периметр треугольника равен: 14+10+12=36(м)
4.высота , проведенная к основанию является медианой ( треугольник равнобедренный ) ⇒ медиана , проведенная к боковой стороне делит ее в отношении 2 : 1 ⇒ меньший отрезок высоты равен 4 , а вся высота 12
В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС.
В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см.
В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см.
Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см.
В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см.
Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу:
СМ·ЕО/2=ЕС·МК/2,
МК=СМ·ЕО/ЕС,
МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см.
МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны.
ответ: 7 см.