АВС ~ ДА1В1С1 два кути трикутника ABC дорівнюють 70 і 44. С1° Тоді два кути трикутника A,B,C, відповідно дорівнюють: а) 35° і 22° 6) 70° i 44° B) 114° і 66° г) Визначити неможливо
Поскольку пирамида правильная, то BH - медиана, биссектриса и высота треугольника ABC, то есть верно, что . Проведем прямую . Тогда . Пусть CP другая медиана треугольника ABC. Пусть медианы этого треугольника пересекаются в точке O. Тогда из-за того, что пирамида правильная, SO - это ее высота, т.е. , а значит и любой прямой в этой плоскости. Пусть . Проведем через точку J прямую параллельную SO, которая пересечет SC в точке I. Тогда , а значит и любой прямой в этой плоскости. Соединим точки M, I и E. Получим плоскость . Покажем, что . и , и . Тогда задача сводится к нахождению площади треугольника . Будем искать ее, как . Из подобия треугольников следует, что . Из подобия треугольников . Подставив найденное в формулу выше, получим . Таким нами образом было получено, что искомая площадь равна .
Нарисуй прямоугольник авсd. проведи две диагонали ас и вd. отметь центр буквой о. и начерти от "о" до каждой стороны по короткому отрезку.. так как пересечение диагоналей произойдет в центре прямоугольника, то отсюда следует, что можно просто сложить эти короткие отрезки и найти стороны. ав=10+10=20см и так как они параллельны сd , то соответственно равны между собой по свойству прямоугольника. вc=10+10=20см и так как они параллельны аd , то соответственно равны между собой по свойству прямоугольника. периметр равен 2(аb+bc)=2(20+20)=80. ответ: р=80.
(см. объяснение)
Объяснение:
Поскольку пирамида правильная, то BH - медиана, биссектриса и высота треугольника ABC, то есть верно, что . Проведем прямую . Тогда . Пусть CP другая медиана треугольника ABC. Пусть медианы этого треугольника пересекаются в точке O. Тогда из-за того, что пирамида правильная, SO - это ее высота, т.е. , а значит и любой прямой в этой плоскости. Пусть . Проведем через точку J прямую параллельную SO, которая пересечет SC в точке I. Тогда , а значит и любой прямой в этой плоскости. Соединим точки M, I и E. Получим плоскость . Покажем, что . и , и . Тогда задача сводится к нахождению площади треугольника . Будем искать ее, как . Из подобия треугольников следует, что . Из подобия треугольников . Подставив найденное в формулу выше, получим . Таким нами образом было получено, что искомая площадь равна .
Задание выполнено!