Найдем сторону ромба АВ=√(АО²+ВО²)=√(225+400)=25, т.к. О- точка пересечения диагоналей. Делит их пополам. Площадь треуг. АОВ равна АВ*ОТ/2, где ОТ - высота треугольника, проведенная к АВ, с другой стороны, т.к. диагонали перпендикулярны, площадь этого же треуг. равна ВО*АО/2⇒ОТ=20*15/25=12, а из треуг. МОТ найдем МО=
√(МТ²-ОТ²)=√(400-144)=√256=16
Здесь расстояние от точки М до АВ - по теореме о трех перпендикулярах, раз проекция МТ на АВО это высота ОТ перпендикулярна АВ, то и МТ ей перпендикулярна.
2. Проведем из точки В высоты на стороны АD И DС соответственно ВО и ВК. Тогда по теореме о трех перпендикулярах МО⊥АD, МК⊥DС, МО=10,ОВ=√(МО²-МВ²)=√(10²-8²)=6, Площадь параллелограмма равна АD*ВО=20*6=120, с др. стороны, площадь равна DС*ВК⇒ВК=2*60/8=15
А расстояние от DС до точки М это МК=√(МВ²+ВК²)=√(64+225)=17
1). АС перпендикулярен ВD т.к. АВСD - ромб (Н - точка пересечения диагоналей)
ВН = НD = 30÷2 = 15
АН = НС = 40÷2 = 20
треуг. АНВ - прямоуг.
По т. Пифагора
P = 25 * 4 = 100
ответ: 100
2). Проведем ОН перпендикулярно АВ
АО = ОС = ОВ = ОD (диагонали прямоугольника точкой пересечения делятся пополам)
угол ВОН = углу НОА = 60°
треуг. ВНО - прямоуг., угол НВО = 30° => ОН = 1/2 ОВ = 2
По т. Пифагора
НВ=
АВ = 2НВ = 4 корня из 3
треуг. АВD - прямоуг
По т. Пифагора
АD =
ответ: 2 стороны по 4 корня из 3, 2 стороны по 4
3). Биссектриса параллелограмма отсекает от него р/б треуг. => ВМ = АВ = 6
ВС = ВМ + МС = 6 + 4 = 10
Р = 6 + 6 + 10 + 10 = 32
ответ: 32
4). АВ = АD = 36÷4 = 9
Проведем АН перпендикулярно ВD
треуг. АВD - р/б, угол АВD = 120°÷2 = 60°
треуг. АВН - прямоуг., угол ВАН = 90° - 60° = 30° => ВН = 1/2 АВ = 4,5 (катет, лежащий против угла в 30°, равны половине гипотенузы)
ВD = 2ВН = 9
ответ: 9
5). Проведем ОН перпендикулярно СD
угол СОН = углу HOD = 60°÷2 = 30°
треуг. СОН - прямоуг., угол СОН = 30° => СН = 1/2 ОС = 1,5 (катет, лежащий против угла в 30°, равны половине гипотенузы) => CD = 3
треуг. АСD - прямоуг.
По т. Пифагора
АD=
S = 3 * 5 = 15
ответ: 15
Найдем сторону ромба АВ=√(АО²+ВО²)=√(225+400)=25, т.к. О- точка пересечения диагоналей. Делит их пополам. Площадь треуг. АОВ равна АВ*ОТ/2, где ОТ - высота треугольника, проведенная к АВ, с другой стороны, т.к. диагонали перпендикулярны, площадь этого же треуг. равна ВО*АО/2⇒ОТ=20*15/25=12, а из треуг. МОТ найдем МО=
√(МТ²-ОТ²)=√(400-144)=√256=16
Здесь расстояние от точки М до АВ - по теореме о трех перпендикулярах, раз проекция МТ на АВО это высота ОТ перпендикулярна АВ, то и МТ ей перпендикулярна.
2. Проведем из точки В высоты на стороны АD И DС соответственно ВО и ВК. Тогда по теореме о трех перпендикулярах МО⊥АD, МК⊥DС, МО=10,ОВ=√(МО²-МВ²)=√(10²-8²)=6, Площадь параллелограмма равна АD*ВО=20*6=120, с др. стороны, площадь равна DС*ВК⇒ВК=2*60/8=15
А расстояние от DС до точки М это МК=√(МВ²+ВК²)=√(64+225)=17