[ч у д о в и й ж о в т и й к о л і р п о д е к у д и н а к і н ц я х х м а р о к л и с н и т ' т о ж о в т о г а р а ч и м с в і т о м т о р о ж е в и м] [с о н ц е б е з п р о м і н: я ч е р в о н е н е н а ч е з ж а р у а л е ж о в т и й с в і т о д х м а р о д б и в а є й к и д а є й а с н и й с в і т н а ш и р о к у к а р т и н у] [з а в и ш г о р о д о м с т о ї т ь н а д н і п р і с и з а а л е з ж о в т и м с у т і н к о м і м л а]
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
[ч у д о в и й ж о в т и й к о л і р п о д е к у д и н а к і н ц я х х м а р о к л и с н и т ' т о ж о в т о г а р а ч и м с в і т о м т о р о ж е в и м] [с о н ц е б е з п р о м і н: я ч е р в о н е н е н а ч е з ж а р у а л е ж о в т и й с в і т о д х м а р о д б и в а є й к и д а є й а с н и й с в і т н а ш и р о к у к а р т и н у] [з а в и ш г о р о д о м с т о ї т ь н а д н і п р і с и з а а л е з ж о в т и м с у т і н к о м і м л а]
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301