Если соединить заданную точку с вершинами треугольника, то получим 3 треугольника с боковыми сторонами 3, 4 и 5 и с равными основаниями. По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине. а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω Получаем 4 неизвестных: а, α, β и ω. Поэтому добавляем четвёртое уравнение: α + β + ω = 2π. Ниже приведено решение системы этих уравнений методом итераций: α градус α радиан cos α a² = a = 25 24 150.0020 2.6180 -0.8660 45.7850 6.7665 41 40 96.8676 1.6907 -0.1196 45.7830 6.7663 34 30 113.1304 1.9745 -0.3928 45.7848 6.7664. С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.
Пусть дан △АВС равнобедренный , ВС - основание, т.О ∈ ВС, F ∈ AB,
E ∈ AC ; ОЕ || АВ и ОF || АС ; ОFАЕ = 32см. Найдём АВ - ?
Решение
∠1 = ∠2 потому что △ АВС равнобедренный ( по условию ).
ОF || АС по условию, поэтому ∠2 =∠3 ( соответственные углы образованные при пересечении этих прямых секущей ВО ), значит
∠1 =∠3.
Рассмотрим △ВFO : равнобедренный, BF = FO.
ОЕ || АВ и ОF || АС по условию,значит OFAE - параллелограмм.
По свойству сторон и углов параллелограмма AF = OE и FO = AE.
Найдём периметр РОFАЕ :
Р(ОFАЕ) = 2 * AF + 2 * FO
Р(ОFАЕ) = 2( AF+FO)
BF = FO , то Р(ОFАЕ) = 2( AF + BF)
Р(ОFАЕ) = 2 * АВ
АВ = Р(ОFАЕ) /2 = 32/2 = 16
По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине.
а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα
a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ
a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω
Получаем 4 неизвестных: а, α, β и ω.
Поэтому добавляем четвёртое уравнение:
α + β + ω = 2π.
Ниже приведено решение системы этих уравнений методом итераций:
α градус α радиан cos α a² = a =
25 24 150.0020 2.6180 -0.8660 45.7850 6.7665
41 40 96.8676 1.6907 -0.1196 45.7830 6.7663
34 30 113.1304 1.9745 -0.3928 45.7848 6.7664.
С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.