Трапеция АВСД: ВС=10, АД=90, диагонали АС=35 и ВД=75. Из точки С проведем прямую СК, параллельную диагонали ВД, до пересечения с продолжением стороны АД (К - точка пересечения СК и АД). Четырехугольник ВСКД - параллелограмм, т.к. ВС||ДК, ВД||СК ВС=ДК=10, ВД=СК=75 АК=АД+ДК=90+10=100 Найдем площадь треугольника АСК по ф.Герона: полупериметр р=(АС+СК+АК)/2=(35+75+100)/2=210/2=105 Sаск=√р(р-АС)(р-СК)(р-АК)=√105*70*30*5=1050 Если опустить высоту СН на основание АД, то она является и высотой ΔАСК, и высотой трапеции АВСД Площадь треугольника можно записать Sаск=АК*СН/2=(АД+ВС)*СН/2= Sавсд ответ:1050
Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
Из точки С проведем прямую СК, параллельную диагонали ВД, до пересечения с продолжением стороны АД (К - точка пересечения СК и АД).
Четырехугольник ВСКД - параллелограмм, т.к. ВС||ДК, ВД||СК
ВС=ДК=10, ВД=СК=75
АК=АД+ДК=90+10=100
Найдем площадь треугольника АСК по ф.Герона:
полупериметр р=(АС+СК+АК)/2=(35+75+100)/2=210/2=105
Sаск=√р(р-АС)(р-СК)(р-АК)=√105*70*30*5=1050
Если опустить высоту СН на основание АД, то она является и высотой ΔАСК, и высотой трапеции АВСД
Площадь треугольника можно записать Sаск=АК*СН/2=(АД+ВС)*СН/2= Sавсд
ответ:1050
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.