Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Найдём половину диагонали по теореме Пифагора (взяв за гипотенузу сторону, равную 10 см, а за катет - половину диагонали, равную 8 см): d = √(10² - 8²) = √(100 - 64) = √36 = 6 см. Тогда вся диагональ равна 2d = 12 см. ответ: 12 см.
Можно также воспользоваться тождеством параллелограмма (ромб - частный случай параллелограмма): 4a² = d₁² + d₂², где d₁, d₂ - диагонали ромба, a - сторона ромба d₂ = √(4a² - d₁²) = √(4·10² - 16²) = √(400 - 256) = √144 = 12 см. ответ: 12 см.
Дано: АВС - равнобедренный, АС - основание, ВD - биссектриса, угол СВА = 100°
Найти: углы DBA и BDA.
Решение: в равнобедренном треугольнике углы при основании равны, значит углы ВАС и ВСА равны. Найдем их численное значение. В треугольнике сумма углов = 180°. (180° - 100°) : 2 = 40°. По условию, ВD - биссектриса, значит углы АВD и DBC = 50° (100° : 2 (т.к. биссектриса делит угол пополам)). Теперь найдём угол ВDA. 180° (сумма углов треугольника) - 40° (угол А) - 50° (угол АВD) = 90.
Также угол ВDA можно было найти проще, зная, что в равнобедренном треугольнике биссектриса, проведенная к основанию, является также высотой и медианой. А углы, образованные при проведении высоты = 90°
Найдём половину диагонали по теореме Пифагора (взяв за гипотенузу сторону, равную 10 см, а за катет - половину диагонали, равную 8 см):
d = √(10² - 8²) = √(100 - 64) = √36 = 6 см.
Тогда вся диагональ равна 2d = 12 см.
ответ: 12 см.
Можно также воспользоваться тождеством параллелограмма (ромб - частный случай параллелограмма):
4a² = d₁² + d₂², где d₁, d₂ - диагонали ромба, a - сторона ромба
d₂ = √(4a² - d₁²) = √(4·10² - 16²) = √(400 - 256) = √144 = 12 см.
ответ: 12 см.
ЧЕРТЁЖ В ПРИЛОЖЕНИИ
Дано: АВС - равнобедренный, АС - основание, ВD - биссектриса, угол СВА = 100°
Найти: углы DBA и BDA.
Решение: в равнобедренном треугольнике углы при основании равны, значит углы ВАС и ВСА равны. Найдем их численное значение. В треугольнике сумма углов = 180°. (180° - 100°) : 2 = 40°. По условию, ВD - биссектриса, значит углы АВD и DBC = 50° (100° : 2 (т.к. биссектриса делит угол пополам)). Теперь найдём угол ВDA. 180° (сумма углов треугольника) - 40° (угол А) - 50° (угол АВD) = 90.
Также угол ВDA можно было найти проще, зная, что в равнобедренном треугольнике биссектриса, проведенная к основанию, является также высотой и медианой. А углы, образованные при проведении высоты = 90°
ответ: угол DВА = 50°, угол ВDA = 90°.
[Удачи!]