Sтрапеции = 1/2(AD + BC)h, где h - высота трапеции.
Пусть a1 = BC (меньшее основание), a2 = AD (большее основание), h1 - высота треугольника BOC, h2 - высота треугольника AOD (обе высоты проведены на из точки О).
Тогда Sтрапеции = 1/2(a1 + a2)(h1 + h2).
Угол CAD = углу BCA(как накрест лежащие углы при параллельных прямых BC и AD и секущей AC),
Угол DBC = углу ADC(как накрест лежащие углы при параллельных прямых BC и AD и секущей BD),
значит, ΔBOC подобен ΔDOA (по двум углам).
По теореме о соотношении площадей подобных треугольников
1) а) 62°, 62°, 56°
б) 59°, 59°, 62°,
2) а) 16°, 16, 148°
б) 82°, 82°, 16°
2)
У равнобедренного треугольника углы при основании равны
поэтому всегда можно рассмотреть 2 случая:
1) ∠1=62°
а)если это угол при основании Δ, то ∠2=∠1=62°
по теореме о сумме трёх углов треугольника:∠1+∠2+∠3=180° →
∠3=180°-2*∠1=180°-124°=56°
б) если это угол, лежащий против основания равнобедренного треугольника , то
∠1+∠2+62°=180°
2∠1=180°-62°;
∠1=118°:2;
∠1=∠2=59°.
2) а) ∠1=∠2=16°- углы при основании
∠3=180°-2*∠1=180°-32°=148°
б) ∠3=16°- угол, лежащий против основания
∠1=∠2=(180°-16°):2=164°:2=82°
Sтрапеции = 1/2(AD + BC)h, где h - высота трапеции.
Пусть a1 = BC (меньшее основание), a2 = AD (большее основание), h1 - высота треугольника BOC, h2 - высота треугольника AOD (обе высоты проведены на из точки О).
Тогда Sтрапеции = 1/2(a1 + a2)(h1 + h2).
Угол CAD = углу BCA(как накрест лежащие углы при параллельных прямых BC и AD и секущей AC),
Угол DBC = углу ADC(как накрест лежащие углы при параллельных прямых BC и AD и секущей BD),
значит, ΔBOC подобен ΔDOA (по двум углам).
По теореме о соотношении площадей подобных треугольников
SΔAOD/SΔBOC = k^2 (k - коэффициент подобия).
SΔAOD/SΔBOC = 8/2 = 4 => k = 2.
Значит, a2/a1 = h2/h1 = 2.
h2 = 2h1, a2 = 2a1 => Sтрапеции = 1/2 * 3a1 * 3h1 = 3a1*h1.
SΔBOC = 1/2*a1*h1 = 2 => a1*h1 = 4.
Итак, Sтрапеции = 3*4 = 12.