Авсда1в1с1д1 - куб. вычислить: а) угол между прямой ва1 и плоскостью в1вс; б) тангенс угла между прямой са1 и плоскостью дсс1; в) тангенс угла между прямой дд1 и плоскостью ад1с; г) угол между прямой да1 и плоскостью в1вд.
будет вообще , если скажите, куда какие буквы поставить.
Осевое сечение конуса - это равнобедренный треугольник. Следовательно, угол при вершине делится высотой конуса пополам. Тогда в прямоугольном треугольнике, образованном высотой конуса, его радиусом (катеты) и образующей (гипотенуза) Образующая L=2R, так как радиус лежит против угла 30°. Учитывая, что R = (2-L) см (дано), можем написать: L =2*(2-L) см. => L=4-2L, => L=4/3 см.
Тогда R=2/3 см.
Площадь полной поверхности конуса равна сумме площадей основания и боковой поверхности, то есть S = So +Sб, или S=π(R²+R*L). подставляя найденные значения, получим
S = π(4/9+2*4/(3*3)) = 12/9 = 4/3см² = 1и1/3 см².
ответ: S=1и1/3 см².
D=28-d
Сторону ромба тогда можно выразить через теорему Пифагора:
(D/2)²+(d/2)²=a² подставим значения
(28-d)²/4+d²/4=10²
784-56d+d²+d²=400
2d²-56d+384=0⇒d²-28d+192=0
Найдем дискриминант:
D=28²-4*192=16, D больше 0, тогда диагональ равна
d1=12, d2=16.
Если меньшая диагональ =12, тогда большая диагональ =16
Sромба=D*d/2=12*16/2=96см²
2). По теореме синусов СК=CD*sinD=12√2*sin45°=(12√2)*(√2/2)=12см.СК-высота трапеции. В трапецию можно вписать окружность тогда, когда сумма длин оснований равна сумме длин боковых сторон. АВ+CD=BC+ADАВ=СК=2⇒ AB+CD=12+12√2=12(1+√2)cм⇒BC+AD=12(1+√2)S трап=1/2(ВС+AD)*СК=1/2*12*(1+√2)*12=72(1+√2) см²