Автодорога длиной 360 км разделена на три участка. Длина первого участка составляет 25% от длины всей дороги, длина второго участка составляет 60% длины первого участка. Найдите длину каждого участка дороги.
Начертите чертёж и посмотрите внимательно. Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон. Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки. Такое рассуждение можно провести для всех 4-х вершин. Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D. Периметр трапеции - это 2(А+В+С+D)=12. Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6. Полусумма - (А+В+С+D)/2=6/2=3.
Определение: Вектора a и b называются равными, если они имеют 1) одинаковую длину, 2) лежат на параллельных прямых или на одной прямой, и 3) направлены в одном направлении. ...
То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины
а) Два вектора называются равными, если их координаты соответственно равны.
ДА
в) Два вектора называются равными, если их абсолютные величины равны.
НЕТ (недостаточный признак)
с) Два вектора называются равными, если они коллинеарны.
НЕТ (недостаточный признак)
d) Координаты вектора – это координаты начала вектора.
НЕТ
Чтобы найти координаты вектора , если заданы координаты его начала и конца, необходимо от координат конца отнять соответствующие координаты начала.
e) Вектор – это отрезок.
Недостаточное определение
Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление
I) Скалярное произведение векторов – это вектор.
НЕТ
Скалярным произведением двух векторов называется ЧИСЛО, равное произведению длин этих векторов на косинус угла между ними:
f) Произведение вектора на число – это число.
НЕТ
Произведение ненулевого вектора на число - это вектор, коллинеарный данному (сонаправленный данному, если число положительное, имеющий противоположное направление, если число отрицательное), а его модуль равен модулю данного вектора, умноженному на модуль числа.
g) При скалярного произведения можно определить угол между векторами
ДА
Косинус угла между векторами равен скалярному произведению этих векторов, деленному на произведение их длин
Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон.
Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки.
Такое рассуждение можно провести для всех 4-х вершин.
Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D.
Периметр трапеции - это 2(А+В+С+D)=12.
Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6.
Полусумма - (А+В+С+D)/2=6/2=3.
Определение: Вектора a и b называются равными, если они имеют 1) одинаковую длину, 2) лежат на параллельных прямых или на одной прямой, и 3) направлены в одном направлении. ...
То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины
а) Два вектора называются равными, если их координаты соответственно равны.
ДА
в) Два вектора называются равными, если их абсолютные величины равны.
НЕТ (недостаточный признак)
с) Два вектора называются равными, если они коллинеарны.
НЕТ (недостаточный признак)
d) Координаты вектора – это координаты начала вектора.
НЕТ
Чтобы найти координаты вектора , если заданы координаты его начала и конца, необходимо от координат конца отнять соответствующие координаты начала.
e) Вектор – это отрезок.
Недостаточное определение
Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление
I) Скалярное произведение векторов – это вектор.
НЕТ
Скалярным произведением двух векторов называется ЧИСЛО, равное произведению длин этих векторов на косинус угла между ними:
f) Произведение вектора на число – это число.
НЕТ
Произведение ненулевого вектора на число - это вектор, коллинеарный данному (сонаправленный данному, если число положительное, имеющий противоположное направление, если число отрицательное), а его модуль равен модулю данного вектора, умноженному на модуль числа.
g) При скалярного произведения можно определить угол между векторами
ДА
Косинус угла между векторами равен скалярному произведению этих векторов, деленному на произведение их длин