Айгуль
Серия C0ч... А е
Только что
1 вариант
ICA - касательная к окружности. Вычислите градусную меру угла ABO,
если<BAC=589
D)
с
2 Равнобедренный треугольник ABC (AB-BCјвписан в окружность с центром в
Точке О Найдите величины дуг AC, AB и BC, если 2AOK-70°.
Аксиома параллельных прямых:
Через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной.
Теорема 1:
На плоскости две прямые, параллельные третьей, параллельны между собой.
Дано: a║c, b║c.
Доказать: a║b.
Доказательство (от противного): предположим, что прямые а и b не параллельны и пересекаются в некоторой точке М. Тогда через точку М проходят две прямые, параллельные прямой с. Но это противоречит аксиоме параллельных прямых. Предположение неверно, а║b.
Теорема 2:
На плоскости если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
Дано: a║b, c ∩ a.
Доказать: с ∩ b.
Доказательство: Пусть М - точка пересечения прямых а и с. Предположим, что прямая с не пересекает прямую b, значит b║с. Тогда через точку М проходит две прямые, параллельные прямой а. Но это противоречит аксиоме параллельных прямых. Предположение неверно, с ∩ b.
Обозначим пирамиду МАВС, МО - высота, угол С=90°, угол САВ=60°, ВС=4√3.
а) Вокруг основания треугольной пирамиды можно описать окружность. Так как все ребра пирамиды наклонены к плоскости основания под равным углом, их проекции равны радиусу описанной окружности, и основание высоты пирамиды - центр описанной окружности.
Центр окружности, описанной вокруг прямоугольного треугольника - середина гипотенузы, ч.т.д.
б) Боковые ребра данной пирамиды - наклонные с равными проекциями, следовательно они равны гипотенузам равнобедренных треугольников с катетами МО - высота пирамиды, и ВО=АО=СО - радиус описанной окружности основания.
АВ=АС:sin60°
АВ=4√3:(√3/2)=8
OB=8:2=4
MB=MA=MC=OB:sin45°=4:√2/2=4√2 (ед. длины)