Дано : ABCD - параллелограмм Пусть ∠A =∠C _острые углы ; AB =BD = 8 ; AC =8√2 .
S(ABCD) -?
Пусть O точка пересечения диагоналей AC и BD. S(ABCD) =4*S(∆ ABO) . * * *т.к. диагонали параллелограмма в точке пересечения делятся пополам* * * Треугольник ABO определен однозначно по трем сторонам и его площадь можно вычислить разными например, по формуле Герона: S(∆ABO) = √p( p-a)(p-b)(p-c) , где p=(a +b+c)/2 _полупериметр . * * *a =AO = AC/2 =4√2 , b=BO =BD/2 =4, c =AB=8 , p =6+2√2 * * * S(∆ABO)=√(6+2√2)(6-2√2)(2√2+2)(2√2-2)=4√(3+√2)(3-√2)(√2+1)(√2+1)=4√7. S(ABCD) =4*S(∆ ABO) =4*4√7=16√7 кв.ед.
Второй
Для параллелограмма : 2(AB² +AD²) =AC²+BD² ; 2(8² +BC²) = (8√2)² +8² ⇒ AD =4√2 . S(ABCD) =AD*h,а высоту h удобно определить из равнобедренного ΔABD . h = √(AB² -(AD/2)²) =√(8² -(2√2)²) =2√2 *√7.
1) Пользуемся формулой: (х-х₁)/(x₂-x₁)=(y-y₁)/(y₂-y₁)
A x=0 y=2; B x=-3 y=7
Подставляем уже известные нам координаты:
(х-0)/(-3-0)=(y-2)/(7-2)
(x)/(-3)=(y-2)/(5)
теперь пытаемся привести к обычному виду: y=kx+m
домножим всё на -3 и 5, получим:
5x=(y-2)*(-3)
5x=-3y+6
Переносим 6:
-3y=5x-6
делим на -3:
y=(5x/-3)+2
2) Дан треугольник АВС, АD - медиана, А(5;1),B(0;3),C(4;7).
Найти: AD.
Во первых, посчитаем все стороны:
Чтобы найти длину стороны нужно из координат одного конца вычесть координаты другого конца и сложить их:
d=√((х₁-х₂)+(у₁-у₂))
АВ=√((5-0)+(1-3))
АВ=√(5-2) =√3
АС=√((5-4)+(1-7))
АС=√(1-6)=√5
ВС=√((0-4)+(3-7))
ВС=√(-4-4) = √8
Теперь, будем искать медиану. Она равна:
Т.к АD- медиана, то она падает на сторону ВС.
По формуле:
АD=1/2(2АC²+2AB²+BC²)
AD=1/2(2*5+2*3+8)
AD=1/2(10+6+8)
AD=24/2 = 12.
3)AC/СB = 3/1 по условию.
Дальше, находим по формуле точки на прямой: х=(х₁+х₂)/2; y=(y₁+y₂)/2
xy-координаты точки с, х₁у₁ - координаты точки А.
Выводим:
x₁=2x-x₂ = 2*2-1 =3 y₁=2y-y₂ = 2*-1-2 = 4
A(3;4)
Как-то так.
Дано :
ABCD - параллелограмм
Пусть ∠A =∠C _острые углы ;
AB =BD = 8 ;
AC =8√2 .
S(ABCD) -?
Пусть O точка пересечения диагоналей AC и BD. S(ABCD) =4*S(∆ ABO) .
* * *т.к. диагонали параллелограмма в точке пересечения делятся пополам* * * Треугольник ABO определен однозначно по трем сторонам и его площадь можно вычислить разными например, по формуле Герона:
S(∆ABO) = √p( p-a)(p-b)(p-c) , где p=(a +b+c)/2 _полупериметр .
* * *a =AO = AC/2 =4√2 , b=BO =BD/2 =4, c =AB=8 , p =6+2√2 * * * S(∆ABO)=√(6+2√2)(6-2√2)(2√2+2)(2√2-2)=4√(3+√2)(3-√2)(√2+1)(√2+1)=4√7.
S(ABCD) =4*S(∆ ABO) =4*4√7=16√7 кв.ед.
Второй
Для параллелограмма : 2(AB² +AD²) =AC²+BD² ;
2(8² +BC²) = (8√2)² +8² ⇒ AD =4√2 .
S(ABCD) =AD*h,а высоту h удобно определить из равнобедренного ΔABD .
h = √(AB² -(AD/2)²) =√(8² -(2√2)²) =2√2 *√7.
S(ABCD) =AD*h =4√2*2√2 *√7=16√7 кв.ед.
ответ : 16√7 кв.ед.