Бічна сторона рівнобедреного трикутника точкою дотику вписаного кола ділиться у відношенні 8 : 9,рахуючи від вершини кута при основі трикутника. знайдіть площу трикутника, якщо радіус вписаного кола дорівнює 16 см.
137.б) средняя линия трапеции равна полусумме длин оснований... из средней линии можно найти коэфф. подобия и ---> длины оснований))) эта окружность будет также описанной и для треугольника ABD и радиус проще всего найти через площадь... 134.б) аналогично предыдущей задаче... боковая сторона треугольника = √(40² + 9²) = 41 R = (41*41*18) / (9*40*4) = 41*41 / 80 = 21_1/80 = 21.0125 140.а) радиус вписанной окружности тоже можно найти через площадь... в равнобедренном треугольнике высота к основанию будет и биссектрисой и медианой))) центр вписанной окружности =точка пересечения биссектрис... О будет лежать на ВН ОВ=ВН - r а расстояние от центра до двух других вершин будет другим... одинаковым... т.к. точки, лежащие на серединном перпендикуляре к отрезку, равноудалены от концов отрезка...
Угол 1 = улгу 2 = 90° значит треугольники AED и DFC прямоугольные В них 1.катет ED равен катету DF 2. гипотенуза AD равна гипотенузе DC значит по теореме Пифагора равны между собой и два других катета AE и FC Значит треугольники AED и DFC равны между собой по двум катетам и углу между ними ,а из этого следует, что угол EAD равен FCD (из условия равенства треугольников) В рассматриваемом треугольнике ABC угол BAC является углом EAD и значит равен углам BCA и FCD ,а углы BAC и BCA есть ничто иное как углы при основании треугольника ABC и они равны между собой Два угла треугольника равны треугольник ABC является равнобедренным По признаку: Два угла треугольника равны треугольник ABC является
из средней линии можно найти коэфф. подобия и ---> длины оснований)))
эта окружность будет также описанной и для треугольника ABD и
радиус проще всего найти через площадь...
134.б) аналогично предыдущей задаче...
боковая сторона треугольника = √(40² + 9²) = 41
R = (41*41*18) / (9*40*4) = 41*41 / 80 = 21_1/80 = 21.0125
140.а) радиус вписанной окружности тоже можно найти через площадь...
в равнобедренном треугольнике высота к основанию будет и биссектрисой и медианой))) центр вписанной окружности =точка пересечения биссектрис...
О будет лежать на ВН
ОВ=ВН - r
а расстояние от центра до двух других вершин будет другим... одинаковым...
т.к. точки, лежащие на серединном перпендикуляре к отрезку, равноудалены от концов отрезка...
В них
1.катет ED равен катету DF
2. гипотенуза AD равна гипотенузе DC
значит по теореме Пифагора равны между собой и два других катета AE и FC
Значит треугольники AED и DFC равны между собой
по двум катетам и углу между ними ,а из этого следует, что угол EAD равен FCD (из условия равенства треугольников)
В рассматриваемом треугольнике ABC угол BAC является углом EAD и значит равен углам BCA и FCD ,а углы BAC и BCA есть ничто иное как углы при основании треугольника ABC и они равны между собой
Два угла треугольника равны треугольник ABC является равнобедренным
По признаку: Два угла треугольника равны треугольник ABC является