1) Рассмотрим сечение, проходящее через центры сфер.
Отрезок, соединяющий центры, перпендикулярен диаметру сечения. Точкой пересечения они делятся пополам и образуют прямоугольный треугольник с катетами 5 и 12. Гипотенуза этого треугольника - искомый радиус. Треугольник с катетами 5 и 12 из Пифагоровых троек (прямоугольные треугольники с целочисленными сторонами), следовательно, R=13 (можно решить по т.Пифагора с тем же результатом).
* * *
2) Центр шара, вписанного в двугранный угол, равноудален от его сторон, и, следовательно, лежит на биссекторной плоскости, т.е. на плоскости, делящей этот двугранный угол пополам.
Искомое расстояние - диагональ квадрата со сторонами, равными радиусу шара ( биссектриса СО его прямого угла - см. рисунок),
Это очень просто всё. Для начала надо найти высоту BM к основанию AC. M - середина AC. Ясно, что она "режет" треугольник на два "египетских" (со сторонами 9,12,15), то есть равна 12. Эта высота к тому же медиана и биссектриса. Все точки в задаче лежат на ней. 1) поэтому от основания до точки пересечения медиан G будет MG = 12/3 = 4; точка пересечения биссектрис I находится так BI/IM = AB/AM = 15/9; => MI = BM*9/(15 + 9) = 12*3/8 = 9/2; отсюда IG = MI - MG = 1/2; 2) тут есть множество решить. Мне нравится рассуждать так. Если продлить AM до пересечения с описанной окружностью в точке B1, то AM*MC = BM*MB1; 9^2 = 12*MB1; MB1 = 27/4; BB1 = 12 + 27/4 = 75/4; Это диаметр описанной окружности (центр O). Радиус OB = 75/8; Поэтому MO = 12 - 75/8 = (96 - 75)/8 = 21/8;
как-то так, проверяйте. Полезно помнить, что в остроугольных треугольниках отношение r/R близко к 2 (у равностороннего точно равно 2); в данном случае r = 9/2; R = 75/8; r/R = 12/25;
1) Рассмотрим сечение, проходящее через центры сфер.
Отрезок, соединяющий центры, перпендикулярен диаметру сечения. Точкой пересечения они делятся пополам и образуют прямоугольный треугольник с катетами 5 и 12. Гипотенуза этого треугольника - искомый радиус. Треугольник с катетами 5 и 12 из Пифагоровых троек (прямоугольные треугольники с целочисленными сторонами), следовательно, R=13 (можно решить по т.Пифагора с тем же результатом).
* * *
2) Центр шара, вписанного в двугранный угол, равноудален от его сторон, и, следовательно, лежит на биссекторной плоскости, т.е. на плоскости, делящей этот двугранный угол пополам.
Искомое расстояние - диагональ квадрата со сторонами, равными радиусу шара ( биссектриса СО его прямого угла - см. рисунок),
СО=r:sin45°=√2
Для начала надо найти высоту BM к основанию AC. M - середина AC.
Ясно, что она "режет" треугольник на два "египетских" (со сторонами 9,12,15), то есть равна 12.
Эта высота к тому же медиана и биссектриса. Все точки в задаче лежат на ней.
1) поэтому от основания до точки пересечения медиан G будет
MG = 12/3 = 4;
точка пересечения биссектрис I находится так
BI/IM = AB/AM = 15/9; => MI = BM*9/(15 + 9) = 12*3/8 = 9/2;
отсюда
IG = MI - MG = 1/2;
2) тут есть множество решить. Мне нравится рассуждать так. Если продлить AM до пересечения с описанной окружностью в точке B1, то
AM*MC = BM*MB1; 9^2 = 12*MB1; MB1 = 27/4; BB1 = 12 + 27/4 = 75/4;
Это диаметр описанной окружности (центр O). Радиус OB = 75/8;
Поэтому MO = 12 - 75/8 = (96 - 75)/8 = 21/8;
как-то так, проверяйте. Полезно помнить, что в остроугольных треугольниках отношение r/R близко к 2 (у равностороннего точно равно 2); в данном случае
r = 9/2; R = 75/8; r/R = 12/25;