Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².
определить каноническое уравнение гиперболы, если угол между асимптотами равен 60 градусов и С= 2 корня из 3.
Угол между асимптотой и осью Ох равен 60/2 = 30 градусов.
Угловой её коэффициент или тангенс угла наклона к оси Ох равен
1/√3. Значит, в уравнениях асимптот у = +-(b/a)x значение b/a = 1/√3.
Отсюда находим соотношение a = b√3.
Далее используем заданное значение с = 2√3.
Так как с² = a² + b², то используем найденное соотношение a и b .
(2√3)² = (b√3)² + b²,
12 = 3b² + b²,
12 = 4b²,
b² = 12/4 = 3,
b = √3.
Тогда а = b√3 = √3*√3 = 3.
Найдены параметры a и b канонического уравнения параболы:
(x²/a²) - (y²/b²) = 1.
Подставляем найденные параметры и получаем
ответ: (x²/3²) - (y²/(√3)²) = 1.
Эксцентриситет гиперболы равен е = с/а = 2√3/3.
Уравнения асимптот у = +-(√3/3)x.
Координаты фокусов F1,F2 = (+-2√3; 0).
Уравнения директрис х = +-a²/c = +-3√3/2.