Бічне ребро прямої чотирикутної призми дорівнює 5см. Знайти площу бічної поверхні призми, якщо її основа – прямокутник, діагональ якого дорівнює 10см, а одна із сторін -8см.
1. Похила утворює з плошини кут 30 градусов. Знайти довжину похилої, якщо довжина перпендикуляра 7 см. Треуг - к прямоугольный, поэтому наклонная равна 7 * 2 = 14 см по свойс-ву катета против угла 30 град. 2. З точки до площини проведено похилі, довжини яких дорівнюють 13см і 15 см. Знайти довжину прекції другої похилої, якщо довжина проекції першої похилої 5см Якщо довжина проекції першої похилої 5см, а похила дорівнює13, Тоді перпендикуляр дорівнює за теоремою Пифагора 12 см. Розглядаючи другий трикутник за т. Піфагора проекція буде дорівнювати 9 см.
1)Т.к. две плоскости взаимноперпендикулярны, то образуется прямоугольный треугольник с гипот АВ. А Т.к. Расстояния от точек А и В до линии пересечения плоскостей равны, то это будет равнобедренный прямоугольный тр-к. Следовательно искомые углы-это углы при основании и равны 90/2=45
ответ: 45, 45
2)Пусть у наклонной а будет проекция 7, а у наклонной b проекция 18, тогда b=a+5
По теореме Пифагора искомая высота:
h^2=b^2 - 324=(a+5)^2 - 324
h^2=a^2 - 49
(a+5)^2 - 324=a^2 - 49
После преобразований получим: а=25, тогда
h=sqrt(625 - 49)=24
ответ: 24
3) Пусть катету а прилежит отрезок=15, а катету b отрезок=20
по св-ву бисс.: a/15=b/20 или a=3/4* b
По т. Пифагора гипот. равна: a^2 + b^2=(3/4* b)^2 + b^2=35^2
После преобразований получим b=28, a=21
"расстояние от этой точки до каждой стороны треугольника, если известно, что они одинаковые": подразумевается что точка располагается над центром вписанной окружности. Найдем ее.
S=p*r, r=S/p=294/42=7
p=P/2=(35+28+21)/2=42
S=1/2*a*b=1/2*28*21=294
Расстояние l от точки до сторон вычисляется по т.Пифагора:
Объяснение:
1)Т.к. две плоскости взаимноперпендикулярны, то образуется прямоугольный треугольник с гипот АВ. А Т.к. Расстояния от точек А и В до линии пересечения плоскостей равны, то это будет равнобедренный прямоугольный тр-к. Следовательно искомые углы-это углы при основании и равны 90/2=45
ответ: 45, 45
2)Пусть у наклонной а будет проекция 7, а у наклонной b проекция 18, тогда b=a+5
По теореме Пифагора искомая высота:
h^2=b^2 - 324=(a+5)^2 - 324
h^2=a^2 - 49
(a+5)^2 - 324=a^2 - 49
После преобразований получим: а=25, тогда
h=sqrt(625 - 49)=24
ответ: 24
3) Пусть катету а прилежит отрезок=15, а катету b отрезок=20
по св-ву бисс.: a/15=b/20 или a=3/4* b
По т. Пифагора гипот. равна: a^2 + b^2=(3/4* b)^2 + b^2=35^2
После преобразований получим b=28, a=21
"расстояние от этой точки до каждой стороны треугольника, если известно, что они одинаковые": подразумевается что точка располагается над центром вписанной окружности. Найдем ее.
S=p*r, r=S/p=294/42=7
p=P/2=(35+28+21)/2=42
S=1/2*a*b=1/2*28*21=294
Расстояние l от точки до сторон вычисляется по т.Пифагора:
l = sqrt(h^2 + r^2)=sqrt(24^2 + 7^2)=25
ответ: 25