В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
elyaivanova
elyaivanova
23.06.2020 05:23 •  Геометрия

Бічну сторону трапеції поділено на 5 рiвних частин. Через точки поділу проведено прямі, паралельні до основ. Знайти довжину найменшого вiдрiзкiв цих прямих між бічними сторонами трапеції, якщо її основи дорівнюють 8 см і 23 см.

Показать ответ
Ответ:
Map21
Map21
10.05.2022 23:40
1. Дано: <AOB и <BOC - смежные
             ОD - биссектриса <AOB
             OF - биссектриса <BOC
            <AOD : <FOC =2 : 7
  Найти <AOD и <FOC.
Решение:
2 <AOD + 2<FOC=180°
<AOD+<FOC=90°
<AOD=2x
<FOC=7x
2x+7x=90°
9x=90°
x=10°
<AOD=2*10°=20°
<FOC=7*10°=70°
ответ: <AOD=20°
           <FOC=70°

2. Дано: <EAC=<DCA
             DF=EF
  Доказать, что ΔABC-равнобедренный.
Док-во:
1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда 
AF=FC.
Так как DC=DF+FC  и   AE=AF+EF, то DC=AE.
2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона).
Из равенства Δ следует, что <DAC=<ECA.
<DAC=<BAC
<ECA=<BCA.
Отсюда <BAC=<BCA.
Значит ΔABC-равнобедренный.
Что и требовалось доказать.
0,0(0 оценок)
Ответ:
pkulanina
pkulanina
10.05.2022 23:40
1. Дано: <AOB и <BOC - смежные
             ОD - биссектриса <AOB
             OF - биссектриса <BOC
            <AOD : <FOC =2 : 7
  Найти <AOD и <FOC.
Решение:
2 <AOD + 2<FOC=180°
<AOD+<FOC=90°
<AOD=2x
<FOC=7x
2x+7x=90°
9x=90°
x=10°
<AOD=2*10°=20°
<FOC=7*10°=70°
ответ: <AOD=20°
           <FOC=70°

2. Дано: <EAC=<DCA
             DF=EF
  Доказать, что ΔABC-равнобедренный.
Док-во:
1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда 
AF=FC.
Так как DC=DF+FC  и   AE=AF+EF, то DC=AE.
2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона).
Из равенства Δ следует, что <DAC=<ECA.
<DAC=<BAC
<ECA=<BCA.
Отсюда <BAC=<BCA.
Значит ΔABC-равнобедренный.
Что и требовалось доказать.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота