B и C точки пересечения двух окружности равных радиусов. на первой окружности выбрана точка A. луч AB пересекает вторую окружность в точке D. на луче DC выбрана точка E так, что DC=CE. Найдите угол CEA, если угол CDB равен надо
Если ∠С = 40°, то ∠С = ∠A. Из этого следует, что △ABC - равнобедренный (BA = BC), что и требовалось доказать.
б) Решение:
Выше мы уже доказали, что △ABC - равнобедренный (BA = BC).
В равнобедренном треугольнике высота, проведённая из вершины угла, противоположного основанию (в данном случае из ∠B), является также его биссектрисой.
Биссектриса делит угол пополам. Отсюда ∠ABH = ∠CBH. А если ∠B = 100°, то ∠ABH = ∠CBH = 100° / 2 = 50°.
На круге размещены токчи А, В и С так, что АС - диаметр круга, а хорду ВС видно с центра окружности круга под углом в 60°. Найдите радиус круга, если АВ = см.
- - -
Дано :
Круг.
Точка О - центр данного круга.
Точка А ∈кругу.
Точка В ∈кругу.
Точка С ∈кругу.
АС - диаметр круга.
∠ВОС = 60°.
АВ = см.
Найти :
ОС = ? (или ОА, это неважно, так как они равны).
Решение :
∠АВС - вписанный (по определению), так ещё и опирается на диаметр АС, следовательно, ∠АВС = 90° (так как диаметр "стягивает" дугу в 180°).
Рассмотрим ΔАВС - прямоугольный.
ОС = ОА (так как радиусы одной окружности). Тогда отрезок ОВ - медиана (по определению), причём проведённая к гипотенузе (АС - гипотенуза, так как лежит против угла в 90°).
В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.
Следовательно -
ОВ = ВС = ОС.
Тогда ΔОВС - равносторонний (по определению).
Каждый угол равностороннего треугольника равен 60°.
а) Доказательство:
По теореме о сумме углов в треугольнике:
∠С = 180° - ∠A - ∠B = 180° - 40° - 100° = 40°.
Если ∠С = 40°, то ∠С = ∠A. Из этого следует, что △ABC - равнобедренный (BA = BC), что и требовалось доказать.
б) Решение:
Выше мы уже доказали, что △ABC - равнобедренный (BA = BC).
В равнобедренном треугольнике высота, проведённая из вершины угла, противоположного основанию (в данном случае из ∠B), является также его биссектрисой.
Биссектриса делит угол пополам. Отсюда ∠ABH = ∠CBH. А если ∠B = 100°, то ∠ABH = ∠CBH = 100° / 2 = 50°.
ответ: 50°.
На круге размещены токчи А, В и С так, что АС - диаметр круга, а хорду ВС видно с центра окружности круга под углом в 60°. Найдите радиус круга, если АВ = см.
- - -
Дано :Круг.
Точка О - центр данного круга.
Точка А ∈кругу.
Точка В ∈кругу.
Точка С ∈кругу.
АС - диаметр круга.
∠ВОС = 60°.
АВ = см.
Найти :ОС = ? (или ОА, это неважно, так как они равны).
Решение :∠АВС - вписанный (по определению), так ещё и опирается на диаметр АС, следовательно, ∠АВС = 90° (так как диаметр "стягивает" дугу в 180°).
Рассмотрим ΔАВС - прямоугольный.
ОС = ОА (так как радиусы одной окружности). Тогда отрезок ОВ - медиана (по определению), причём проведённая к гипотенузе (АС - гипотенуза, так как лежит против угла в 90°).
В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.Следовательно -
ОВ = ВС = ОС.
Тогда ΔОВС - равносторонний (по определению).
Каждый угол равностороннего треугольника равен 60°.Следовательно -
∠ВОС = ∠ОВС = ∠С = 60°.
Тогда -
BC = 1 см.
ответ :1 см.