В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
aiis171
aiis171
10.03.2020 07:27 •  Геометрия

Більша діагональ ромба с ,а тупий кут -φ ,знайти меншу діагональ і сторону

Показать ответ
Ответ:
Aisulu123456
Aisulu123456
15.12.2022 05:02

Поскольку плоскость сечения параллельна оси цилиндра, сечением будет прямоугольник с высотой H, равной высоте цилиндра, и основанием длиной L, являющемся хордой, лежащей в основании цилиндра. Также известно, что диагональ прямоугольника имеет наклон в 60 градусов к его основанию. Отсюда можно записать следующие соотношения:

 

\frac{H}{L}=\tan 60^o=\sqrt{3}\\ H=L\sqrt{3}\\ S_s=L\cdot H=16\sqrt{3}\\ L^2\sqrt{3}=16\sqrt{3}\\\\ L=4\\ H=4\sqrt{3} 

 

Далее проведем отрезки, соединяющие концы хорды с центром основания цилиндра. Получится равнобедренный треугольник с углом в вершине 120 градусов и бедрами, равными радиусу основания цилиндра. Проведя в этом треугольнике высоту из вешины к хорде, получим два прямоугольных треугольника, одним из катетов которых является половина хорды. Поскольку угол между этими катетами и гипотенузой равен 30 градусам, можно записать следующее соотношение между длиной хорды и радиусом основания цилиндра:

 

\frac{L}{2}=R\cos 30^o\\ L=2R\cos 30^o=R\sqrt{3}\\ R=\frac{L}{\sqrt{3}}=\frac{4}{\sqrt{3}} 

 

Запишем теперь выражение для площади боковой поверхности цилиндра:

 

S=2\pi RH=2\pi\cdot\frac{4}{\sqrt{3}}\cdot 4\sqrt{3}=32\pi (cm^2) 

 

ответ: Площадь боковой поверхности цилиндра равна 32пи кв. см 

0,0(0 оценок)
Ответ:
Bossak
Bossak
15.12.2022 05:02

Поскольку плоскость сечения параллельна оси цилиндра, сечением будет прямоугольник с высотой H, равной высоте цилиндра, и основанием длиной L, являющемся хордой, лежащей в основании цилиндра. Также известно, что диагональ прямоугольника имеет наклон в 60 градусов к его основанию. Отсюда можно записать следующие соотношения:

 

\frac{H}{L}=\tan 60^o=\sqrt{3}\\ H=L\sqrt{3}\\ S_s=L\cdot H=16\sqrt{3}\\ L^2\sqrt{3}=16\sqrt{3}\\\\ L=4\\ H=4\sqrt{3} 

 

Далее проведем отрезки, соединяющие концы хорды с центром основания цилиндра. Получится равнобедренный треугольник с углом в вершине 120 градусов и бедрами, равными радиусу основания цилиндра. Проведя в этом треугольнике высоту из вешины к хорде, получим два прямоугольных треугольника, одним из катетов которых является половина хорды. Поскольку угол между этими катетами и гипотенузой равен 30 градусам, можно записать следующее соотношение между длиной хорды и радиусом основания цилиндра:

 

\frac{L}{2}=R\cos 30^o\\ L=2R\cos 30^o=R\sqrt{3}\\ R=\frac{L}{\sqrt{3}}=\frac{4}{\sqrt{3}} 

 

Запишем теперь выражение для площади боковой поверхности цилиндра:

 

S=2\pi RH=2\pi\cdot\frac{4}{\sqrt{3}}\cdot 4\sqrt{3}=32\pi (cm^2) 

 

ответ: Площадь боковой поверхности цилиндра равна 32пи кв. см 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота