Средняя линия трапеции равна полусумме ее оснований. Меньшее основание нам известно и оно равно 10. Осталось найти большее основание. Опустим высоту трапеции, длина высоты будет равна меньшей стороне и равна 10. У нас получились квадрат и прямоугольный треугольник. Рассмотрим прямоугольный треугольник. Т.к. острый угол равен 45, то и другой равен 45 ( по сумме углов треугольника). Значит треугольник равнобедренный с катетами равными 10. Значит большее основание равно 10+10=20. Средняя линия трапеции равна (10+20)/2=15
Дано:окр.с центром О, R=5см, АВ-хорда, АВ=6, М-середина АВ Найти: ОМ=? Решение: Так как АВ хорда, то точки А и В лежат на окружности. Проведу ОА и ОВ. Они являются радиусами одной окружности, значит ОА=ОВ=5см. Рассмотрю треугольник АОВ, он равнобедренный (так как АО=ОВ по доказанному) с основанием АВ. Проведу ОМ. Так как М - середина АВ, то ОМ - медиана, значит АМ=МВ=1/2АВ=1/2*6=3 см. А в равнобедренном треугольнике медиана, проведенная к основанию, является высотой. ОМ - высота, угол ОМА - прямой. рассмотрю треугольник ОМА, он прямоугольный (так как угол ОМА - прямой). По теореме Пифагора найду ОМ: ОМ²=ОА²-АМ²= 5²-3²=25-9=16 ОМ=4см ответ: ОМ= 4
Меньшее основание нам известно и оно равно 10. Осталось найти большее основание.
Опустим высоту трапеции, длина высоты будет равна меньшей стороне и равна 10. У нас получились квадрат и прямоугольный треугольник.
Рассмотрим прямоугольный треугольник. Т.к. острый угол равен 45, то и другой равен 45 ( по сумме углов треугольника). Значит треугольник равнобедренный с катетами равными 10.
Значит большее основание равно 10+10=20.
Средняя линия трапеции равна (10+20)/2=15
Найти: ОМ=?
Решение:
Так как АВ хорда, то точки А и В лежат на окружности. Проведу ОА и ОВ. Они являются радиусами одной окружности, значит ОА=ОВ=5см. Рассмотрю треугольник АОВ, он равнобедренный (так как АО=ОВ по доказанному) с основанием АВ. Проведу ОМ. Так как М - середина АВ, то ОМ - медиана, значит АМ=МВ=1/2АВ=1/2*6=3 см. А в равнобедренном треугольнике медиана, проведенная к основанию, является высотой. ОМ - высота, угол ОМА - прямой.
рассмотрю треугольник ОМА, он прямоугольный (так как угол ОМА - прямой). По теореме Пифагора найду ОМ:
ОМ²=ОА²-АМ²= 5²-3²=25-9=16
ОМ=4см
ответ: ОМ= 4