B основі піраміди лежить рівнобедрений трикутник з основою 12 см і кутом 60° при вершині. Усі бічні ребра піраміди утворюють iз площиною піраміди. основи кут 30°. Знайдіть об'єм
Отрезок BD - диаметр окружности с центром О. Хорда AC делит пополам радиус OB и перпендикулярна к нему. Найдите углы четырёхугольника ABCD и градусные меры дуг AB BC CD и AD. --------- Соединим центр окружности с вершиной А. Отрезок ОА - радиус, МО равен его половине. sin ∠ МАО равен МО:АО=1/2. Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°. ВО=АО=радиус окружности.⇒ △ АОВ равнобедренный. Сумма углов треугольника 180 градусов. ∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний. Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°. ⊿ ВСD и ⊿ВАD -прямоугольные, и ∠СDВ=∠АDВ=180°-(90°-60°)=30° ⊿ ВСD=⊿ВАD. ∠ D=2 ·∠АDВ=2·30°=60° Сумма углов четырехугольника 360° ∠АВС=360°- 2·90°- 60°=120° Градусная мера дуги равна центральному углу, который на нее опирается. На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60° На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60° В треугольнике САD ∠САD=∠DАС=60° Вписанный угол равен половине градусной меры дуги, на которую опирается. На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120° На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120° ответ: ∠А=С=90° ∠В=120° ∠Д=60° градусные меры дуг AB=60° BC=60° CD=120° AD=120°.
Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
пополам радиус OB и перпендикулярна к нему. Найдите углы
четырёхугольника ABCD и градусные меры дуг AB BC CD и AD.
---------
Соединим центр окружности с вершиной А.
Отрезок ОА - радиус, МО равен его половине.
sin ∠ МАО равен МО:АО=1/2.
Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°.
ВО=АО=радиус окружности.⇒ △ АОВ равнобедренный.
Сумма углов треугольника 180 градусов.
∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний.
Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°.
⊿ ВСD и ⊿ВАD -прямоугольные, и
∠СDВ=∠АDВ=180°-(90°-60°)=30°
⊿ ВСD=⊿ВАD.
∠ D=2 ·∠АDВ=2·30°=60°
Сумма углов четырехугольника 360°
∠АВС=360°- 2·90°- 60°=120°
Градусная мера дуги равна центральному углу, который на нее
опирается.
На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60°
На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60°
В треугольнике САD ∠САD=∠DАС=60°
Вписанный угол равен половине градусной меры дуги, на которую
опирается.
На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120°
На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120°
ответ:
∠А=С=90°
∠В=120°
∠Д=60°
градусные меры дуг
AB=60°
BC=60°
CD=120°
AD=120°.