Подобные треугольники - треугольники, углы которых соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника. То есть и площади также должны быть пропорциональны.
Посчитаем площадь одного треугольника: 2+5+6=13 см. Разделим площадь большого треугольника (26 см) на площадь маленького (13 см), получится 2. Это означает, что стороны большого треугольника в 2 раза больше сторон маленького. Рассчитаем стороны большого треугольника: 2*2=4 см, 5*2=10 см, 6*2=12 см. Проверим правильно ли мы посчитали стороны: 4+10+12=26 см - периметр. Верно.
ответ: большая сторона подобного треугольника - 12 см.
1) Расстояние от оси цилиндра до плоскости - длина перпендикуляра, опущенного из любой точки оси на данную плоскость, на рисунке: ОН =8 см.
2)Сечение - прямоугольник СС'BB' и его площадь равна BC' *CC' = 60 cм,
учитывая, что BC' = 5 см , то CC' = 12 см.
3) V = S осн.* H
S осн = pi* R^2
R- ? Из тр-ка OBB' - равнобедр. прямоуг.: OH - высота, медиана, тогда BH =12:2=6
Из тр-ка OBH' - прямоуг.: R = OB= корень из( OH^2 +BH^2)=
= корень из (8^2+6^2) = 10 см.
Таким образом V = pi* 10^2*5 =500*pi (см ^3)
Объяснение:
Подобные треугольники - треугольники, углы которых соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника. То есть и площади также должны быть пропорциональны.
Посчитаем площадь одного треугольника: 2+5+6=13 см. Разделим площадь большого треугольника (26 см) на площадь маленького (13 см), получится 2. Это означает, что стороны большого треугольника в 2 раза больше сторон маленького. Рассчитаем стороны большого треугольника: 2*2=4 см, 5*2=10 см, 6*2=12 см. Проверим правильно ли мы посчитали стороны: 4+10+12=26 см - периметр. Верно.
ответ: большая сторона подобного треугольника - 12 см.