Бірінші шеңбердің диаметрі 10 см, ал екінші шеңбердің диаметрі 12 см. Егер екі шеңбердің центрлерінің арақашықтығы 11 см болса, олардың неше ортақ нүктесі бар? Какой радиус?
Пусть эта прямая пересекает прямую MN в точке K. Я привожу решение для случая, когда точка K находится между M и N. ∠PMN = ∠PRN; ∠PKN = ∠PRN + ∠RNM = ∠PMN + ∠RNM; аналогично ∠SKN = ∠SMN + ∠QNM; если сложить оба равенства, получится ∠PMS + ∠QNR = 180°; Случай, когда точка К лежит не внутри отрезка MN, не сложнее. Пусть K (для определённости) лежит "выше" точки M (если считать, что прямая MN расположена "вертикально", и точка M "выше" точки N). Пусть точка T расположена "еще выше" точки K. Тогда ∠TKS = ∠TMS + ∠KSM = ∠TMS + ∠RNM; (если не понятно, почему ∠RMN = ∠KSM; то это вписанные в "левую" окружность углы, опирающиеся на дугу MR) аналогично ∠TKP = ∠TMP + ∠KPM = ∠TMP + ∠QNM; и остается сложить оба равенства, что дает тот же ответ. ∠PMS + ∠QNR = 180°;
Если малость схитрить, то можно выбрать удобный частный случай и решить для него. Например, для прямоугольного треугольника ABC с прямым углом у вершины B. Тогда три искомые описанные окружности будут иметь диаметры равные длинам сторон этого треугольника: 7 (меньший катет) , 14 (гипотенуза) и 14*корень(3)/2 (больший катет). В сумме диаметры составят 7*(3+корень(3)), а сумма радиусов будет вдвое меньше.
Но это, конечно, фейковое решение основанное на уверенности в том, что условие правильное и задача однозначно решается.
Я привожу решение для случая, когда точка K находится между M и N.
∠PMN = ∠PRN;
∠PKN = ∠PRN + ∠RNM = ∠PMN + ∠RNM;
аналогично
∠SKN = ∠SMN + ∠QNM;
если сложить оба равенства, получится
∠PMS + ∠QNR = 180°;
Случай, когда точка К лежит не внутри отрезка MN, не сложнее.
Пусть K (для определённости) лежит "выше" точки M (если считать, что прямая MN расположена "вертикально", и точка M "выше" точки N). Пусть точка T расположена "еще выше" точки K.
Тогда
∠TKS = ∠TMS + ∠KSM = ∠TMS + ∠RNM; (если не понятно, почему ∠RMN = ∠KSM; то это вписанные в "левую" окружность углы, опирающиеся на дугу MR)
аналогично
∠TKP = ∠TMP + ∠KPM = ∠TMP + ∠QNM;
и остается сложить оба равенства, что дает тот же ответ.
∠PMS + ∠QNR = 180°;
Если малость схитрить, то можно выбрать удобный частный случай и решить для него. Например, для прямоугольного треугольника ABC с прямым углом у вершины B. Тогда три искомые описанные окружности будут иметь диаметры равные длинам сторон этого треугольника: 7 (меньший катет) , 14 (гипотенуза) и 14*корень(3)/2 (больший катет). В сумме диаметры составят 7*(3+корень(3)), а сумма радиусов будет вдвое меньше.
Но это, конечно, фейковое решение основанное на уверенности в том, что условие правильное и задача однозначно решается.