1). Призма называется прямой, если боковые грани призмы перпендикулярны основаниям. В основании прямой (и обычной) призмы могут лежать любые равные многоугольники, лежащие в параллельных плоскостях, в том числе и трапеция.
2). Так как прямоугольный параллелепипед является частным случаем прямой четырехугольной призмы, то, в качестве примера, можно назвать любые объекты такой формы: микроволновая печь, шкаф, жилой многоквартирный дом, колонка, тумбочка и т.п.
Из "экзотических" примеров можно назвать, например, рельс, имеющий в основании многоугольник в форме буквы н
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум углам (два угла равны по условию, еще два угла вертикальные). Тогда:
Так как медианы точкой пересечения делятся в отношении 2:1, то:
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный. Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
Следовательно стороны в два раза больше: Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
1). Призма называется прямой, если боковые грани призмы перпендикулярны основаниям. В основании прямой (и обычной) призмы могут лежать любые равные многоугольники, лежащие в параллельных плоскостях, в том числе и трапеция.
2). Так как прямоугольный параллелепипед является частным случаем прямой четырехугольной призмы, то, в качестве примера, можно назвать любые объекты такой формы: микроволновая печь, шкаф, жилой многоквартирный дом, колонка, тумбочка и т.п.
Из "экзотических" примеров можно назвать, например, рельс, имеющий в основании многоугольник в форме буквы н
Так как медианы точкой пересечения делятся в отношении 2:1, то:
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
Следовательно стороны в два раза больше:
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
ответ: 2/3