Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4 площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28
На сторонах АВ, ВС и СА треугольника АВС отмечены соответственно точки P, Q и R. Известно, что AP : PB = BQ : QC = CR : RA = 4, а площадь треугольника АВС равна 25 кв.см. Чему равна площадь треугольника PQR (в кв.см)?
Проведем ВВ₁⊥АС и РР₁⊥АС.
ΔАВВ₁ подобен ΔАРР₁ по двум углам (угол при вершине А общий, ∠АР₁Р = ∠АВ₁В = 90°), ⇒
РР₁ : ВВ₁ = АР : АВ = 4 : 5
РР₁ = 4/5 ВВ₁
AR = 1/5 AC
Sapr = 1/2 AR · PP₁ = 1/2 · 1/5 AC · 4/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc
Задача 1.
S=kh
Соответственно k=S:h
60:12=5 - средняя линия трапеции
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4
площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28
На сторонах АВ, ВС и СА треугольника АВС отмечены соответственно точки P, Q и R. Известно, что AP : PB = BQ : QC = CR : RA = 4, а площадь треугольника АВС равна 25 кв.см. Чему равна площадь треугольника PQR (в кв.см)?
Проведем ВВ₁⊥АС и РР₁⊥АС.
ΔАВВ₁ подобен ΔАРР₁ по двум углам (угол при вершине А общий, ∠АР₁Р = ∠АВ₁В = 90°), ⇒
РР₁ : ВВ₁ = АР : АВ = 4 : 5
РР₁ = 4/5 ВВ₁
AR = 1/5 AC
Sapr = 1/2 AR · PP₁ = 1/2 · 1/5 AC · 4/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc
Проведем QQ₁⊥AC.
ΔСQQ₁ подобен ΔСВВ₁ по двум углам.
QQ₁ : BB₁ = CQ : CB = 1 : 5
QQ₁ = 1/5 BB₁
RC = 4/5 AC
Scqr = 1/2 RC · QQ₁ = 1/2 · 4/5 AC · 1/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc
Проведем АА₁⊥ВС и РР₂⊥ВС.
ΔАА₁В подобен ΔРР₂В по двум углам.
РР₂ : АА₁ = РВ : АВ = 1 : 5
РР₂ = 1/5 АА₁
BQ = 4/5 BC
Sbpq = 1/2 BQ · PP₂ = 1/2 · 4/5 BC · 1/5 AA₁ = 4/25 (1/2 BC · AA₁) = 4/25 · Sabc
Spqr = Sabc - Sapq - Scqr - Sbpq = Sabc - 3 · 4/25 Sabc = Sabc - 12/25 Sabc =
= 13/25 Sabc
Spqr = 13/25 · 25 = 13 см²