S = 10,08 ед.изм2
или
S = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
Объяснение:
1). Данную трапецию разделим на 3 сегмента:
1 Прямоугольник и 2 боковых треугольника.
2). Найдем площади данных фигур: (в клетках)
а). Sпр = 6 * 7 = 42 кл2.
б). Sтр1 = 5 * 6 / 2 = 15 кл2.
в). Sтр2 = 2 * 6 / 2 = 6 кл2.
Сумма данных сегментов будет являться площадью трапеции (в клетках):
г). Sтр = 42 + 15 + 6 = 63 кл2.
Единицы измерения не указаны, возможно см2, но продолжим так, зная размер клетки, получим площадь в ед.изм.:
S = 0,4 * 0,4 * 63 = 0,16 * 63 = 10,08 ед.изм2.
S = 4/10 * 4/10 * 63 = (4 * 4)/(10 * 10) * 63 = 16/100 * 63 = (16 * 63)/(100 * 1) = 1008/100 = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
∠XIaY=114°
Дано: ΔАВС.
BIa - биссектриса ∠РВС; СIa - биссектриса ∠ВСТ;
ХВ=АВ; АС=СY;
∠ВАС=66°.
Найти: ∠XIaY
1. ∠1+∠2=180°-66°=114° (сумма углов Δ)
∠1+2α=180° (развернутый)
∠2+2β=180° (развернутый)
∠1+∠2+2α+2β=360°
2(α+β)=360°-114°=246° ⇒ α+β=123°
2. Рассмотрим ΔBCIa.
∠BIaC=180°-(α+β)=180°-123°=57° =∠6+∠3 (сумма углов Δ)
3. Рассмотрим ΔХВА - равнобедренный.
∠XBA=∠KBA=α ⇒ ВК - биссектриса, медиана, высота (свойство р/б Δ)
4. Рассмотрим ΔACY - равнобедренный.
∠АСМ=∠MCY=β ⇒ CM - биссектриса, медиана, высота (свойство р/б Δ)
5. Рассмотрим ΔXIaA.
IaK - высота, медиана (п.3) ⇒ ΔXIaA - равнобедренный
⇒ IaK - биссектриса ⇒ ∠5=∠6.
6. Рассмотрим ΔAIaY.
IaM - высота, медиана ⇒ ΔAIaY - равнобедренный
⇒ IaM - биссектриса ⇒ ∠3=∠4
7. ∠XIaY=∠5+∠6+∠3+∠4=2*(∠6+∠3)=2*57°=114°
S = 10,08 ед.изм2
или
S = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
Объяснение:
1). Данную трапецию разделим на 3 сегмента:
1 Прямоугольник и 2 боковых треугольника.
2). Найдем площади данных фигур: (в клетках)
а). Sпр = 6 * 7 = 42 кл2.
б). Sтр1 = 5 * 6 / 2 = 15 кл2.
в). Sтр2 = 2 * 6 / 2 = 6 кл2.
Сумма данных сегментов будет являться площадью трапеции (в клетках):
г). Sтр = 42 + 15 + 6 = 63 кл2.
Единицы измерения не указаны, возможно см2, но продолжим так, зная размер клетки, получим площадь в ед.изм.:
S = 0,4 * 0,4 * 63 = 0,16 * 63 = 10,08 ед.изм2.
или
S = 4/10 * 4/10 * 63 = (4 * 4)/(10 * 10) * 63 = 16/100 * 63 = (16 * 63)/(100 * 1) = 1008/100 = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
∠XIaY=114°
Объяснение:
Дано: ΔАВС.
BIa - биссектриса ∠РВС; СIa - биссектриса ∠ВСТ;
ХВ=АВ; АС=СY;
∠ВАС=66°.
Найти: ∠XIaY
1. ∠1+∠2=180°-66°=114° (сумма углов Δ)
∠1+2α=180° (развернутый)
∠2+2β=180° (развернутый)
∠1+∠2+2α+2β=360°
2(α+β)=360°-114°=246° ⇒ α+β=123°
2. Рассмотрим ΔBCIa.
∠BIaC=180°-(α+β)=180°-123°=57° =∠6+∠3 (сумма углов Δ)
3. Рассмотрим ΔХВА - равнобедренный.
∠XBA=∠KBA=α ⇒ ВК - биссектриса, медиана, высота (свойство р/б Δ)
4. Рассмотрим ΔACY - равнобедренный.
∠АСМ=∠MCY=β ⇒ CM - биссектриса, медиана, высота (свойство р/б Δ)
5. Рассмотрим ΔXIaA.
IaK - высота, медиана (п.3) ⇒ ΔXIaA - равнобедренный
⇒ IaK - биссектриса ⇒ ∠5=∠6.
6. Рассмотрим ΔAIaY.
IaM - высота, медиана ⇒ ΔAIaY - равнобедренный
⇒ IaM - биссектриса ⇒ ∠3=∠4
7. ∠XIaY=∠5+∠6+∠3+∠4=2*(∠6+∠3)=2*57°=114°