Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
Сечение - равнобедренный прямоугольный треугольник с катетами - образующими конуса, не является осевым, так как образующая конуса наклонена к плоскости основания конуса под углом 30° (дано). =>
S = (1/2)·L² = 18 см² (дано) =>
L = 6 см.
В прямоугольном треугольнике, образованном высотой, радиусом (катеты) и гипотенузой (образующая), против угла 30° лежит катет (высота), равный половине гипотенузы (образующая конуса) =>
Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС:
угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС)
далее возьмем прямоугольный треугольник АНС где АН- высота:
угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30
тогда угол НАС равен
180-90-30=60
АН=2
найдем сторону НС:
по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3=
2 корня из 3
окей, далее найдем АС она же является диагональю трапеции:
АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4
готово, осталось посчитать:
S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
Площадь основания конуса равна 27·π см².
Объяснение:
Сечение - равнобедренный прямоугольный треугольник с катетами - образующими конуса, не является осевым, так как образующая конуса наклонена к плоскости основания конуса под углом 30° (дано). =>
S = (1/2)·L² = 18 см² (дано) =>
L = 6 см.
В прямоугольном треугольнике, образованном высотой, радиусом (катеты) и гипотенузой (образующая), против угла 30° лежит катет (высота), равный половине гипотенузы (образующая конуса) =>
h = 3 cм.
По Пифагору R² = L² h² = 36 - 9 = 27 см². =>
R = 3√3 см. Тогда
S = π·R² = 27π.