нехай х дорівнює єдиній частині кута, то номер4=5х, а номер6=4х (за вл. внутр. одностор. кутів) маємо рівняння 4х+5х=180°; 9х=180; х=20°; номер4=100°; номер6=80°
Обозначим вершины призмы АВСА₁В₁С₁. Так как призма правильная, то в её основании лежит равносторонний треугольник и все её боковые грани равны. Поскольку площадь основания равна площади одной боковой грани, то площади всех граней призмы равны и так как их 5 то площадь каждой грани составит:
Sгр.=Sосн.=180√3÷5=36√3(см²)
Найдём сторону основания АВС через формулу площади равностороннего треугольника:
где а – сторона основания, перемножим крест накрест:
а²√3=4S
a²√3=4×36√3
a²√3=144√3
a²=144√3÷√3
a²=144
a=√144
a=12(см) – сторона основания.
Поскольку каждая грань содержит сторону сторону основания найдём вторую сторону грани, являющейся высотой призмы:
АА₁=ВВ₁=СС₁=ДД₁=Sгр.÷12=36√3÷12=
=3√3(см)
V=Sосн×АА₁=36√3×3√3=108×3=324(см³)
ОТВЕТ: V=324(см³)
№4
Обозначим вершины призмы АВСДА₁В₁С₁Д₁
Самой большой диагональю призмы является АС₁.
Площадь параллелограмма (основания) вычисляется по формуле:
Sосн=ВС×СД×sinC=6×3×sin60°=18×√3/2=
=9√3(см²).
Проведём в основании диагональ АС. Сумма углов основания, прилегщих к одной стороне равна 180°, поэтому ∠Д=∠В=180–∠С=180–60°=120°
Найдём по теореме косинусов диагональ АС:
АС²=АВ²+ВС²–2×АВ×ВС×cos120°=
=3²+6²–2×3×6×(–1/2)=9+36+18=63
AC=√63=3√7(см)
В ∆АС₁С найдём С₁С через тангенс угла. Тангенс угла – это отношение противолежащего катета к
ответ:100°;80°;100°;80°;100°;80°;100°;80°;
Объяснение: Пронумеруемо кути
нехай х дорівнює єдиній частині кута, то номер4=5х, а номер6=4х (за вл. внутр. одностор. кутів) маємо рівняння 4х+5х=180°; 9х=180; х=20°; номер4=100°; номер6=80°
номер3=номеру6=80°(за вл. внутр. різностор.)
номер4=номеру5=100°(за вл. внутр. різностор.)
номер4=номеру1=100°(за вл. вертикальних кутів)
номер3=номеру2=80°(за вл. вертикальних кутів)
номер5=номеру8=100°(за вл. вертикальних кутів)
номер6=номеру7=80°(за вл. вертикальних кутів)
Объяснение:
№3
Обозначим вершины призмы АВСА₁В₁С₁. Так как призма правильная, то в её основании лежит равносторонний треугольник и все её боковые грани равны. Поскольку площадь основания равна площади одной боковой грани, то площади всех граней призмы равны и так как их 5 то площадь каждой грани составит:
Sгр.=Sосн.=180√3÷5=36√3(см²)
Найдём сторону основания АВС через формулу площади равностороннего треугольника:
где а – сторона основания, перемножим крест накрест:
а²√3=4S
a²√3=4×36√3
a²√3=144√3
a²=144√3÷√3
a²=144
a=√144
a=12(см) – сторона основания.
Поскольку каждая грань содержит сторону сторону основания найдём вторую сторону грани, являющейся высотой призмы:
АА₁=ВВ₁=СС₁=ДД₁=Sгр.÷12=36√3÷12=
=3√3(см)
V=Sосн×АА₁=36√3×3√3=108×3=324(см³)
ОТВЕТ: V=324(см³)
№4
Обозначим вершины призмы АВСДА₁В₁С₁Д₁
Самой большой диагональю призмы является АС₁.
Площадь параллелограмма (основания) вычисляется по формуле:
Sосн=ВС×СД×sinC=6×3×sin60°=18×√3/2=
=9√3(см²).
Проведём в основании диагональ АС. Сумма углов основания, прилегщих к одной стороне равна 180°, поэтому ∠Д=∠В=180–∠С=180–60°=120°
Найдём по теореме косинусов диагональ АС:
АС²=АВ²+ВС²–2×АВ×ВС×cos120°=
=3²+6²–2×3×6×(–1/2)=9+36+18=63
AC=√63=3√7(см)
В ∆АС₁С найдём С₁С через тангенс угла. Тангенс угла – это отношение противолежащего катета к
прилежащему:
tgC₁AC=CC₁/AC
CC₁=tgC₁AC×AC=tg30°×3√7=(√3/3)×3√7=
=√3×√7=√21(см)
V=Sосн×С₁С=9√3×√21=9√63=9×3√7=
=27√7(см³)
ОТВЕТ: V=27√7(см³)