Дан ромб АВСД, диагональ Ас делит его на два равных треугольника АВСД и АДС, в равносторонний треугольник АВС вписана окружность, по формуле радиус вписанной в правильный треугольник окружности равен:а/2корня; где а- сторона ромба. Откуда, а=2корня3, т.к. Радиус равен1. Т.к. Треугольник равносторонний, то АС-диагональ, равна 2корня из 3 Проведем высоту ВН, получается прямоугольный треугольник по теореме Пифагора ВН=корень из АВ квадрат-АН квадрат=корень из 12-3=3. Т.к. Ромб-частный случай параллелограмма, то его диагонали точкой пересечения делятся пополам, значит диагональ ВД=6. Площадь ромба равна произведение диагоналей напополам, т.е. 6корней из 3
В равнобедренный треугольник АВС , АВ=ВС=15 , АС=24, вписана окружность (О; r). Найдите r.
Объяснение:
1)Пусть ВН ⊥АС. Центр вписанной окружности О лежит в точке пересечения биссектрис. В равнобедренном треугольнике биссектриса совпадает с высотой ⇒поэтому О лежит на высоте ВН.
АН=42 :2=12( т.к. ВН и медиана ) . Будем искать r из ΔКВО.
2) ΔАВН-прямоугольный, по т. Пифагора ВН=√(15²-12²)=9. Тогда отрезок ВО можно выразить так ВО=9-r.
По свойству отрезков касательных АН=АК=12⇒КВ=15-12=3.
3) ΔКВО-прямоугольный , по свойству радиуса , проведенного в точку касания . По т. Пифагора ВО²=ОК²+КВ²
В равнобедренный треугольник АВС , АВ=ВС=15 , АС=24, вписана окружность (О; r). Найдите r.
Объяснение:
1)Пусть ВН ⊥АС. Центр вписанной окружности О лежит в точке пересечения биссектрис. В равнобедренном треугольнике биссектриса совпадает с высотой ⇒поэтому О лежит на высоте ВН.
АН=42 :2=12( т.к. ВН и медиана ) . Будем искать r из ΔКВО.
2) ΔАВН-прямоугольный, по т. Пифагора ВН=√(15²-12²)=9. Тогда отрезок ВО можно выразить так ВО=9-r.
По свойству отрезков касательных АН=АК=12⇒КВ=15-12=3.
3) ΔКВО-прямоугольный , по свойству радиуса , проведенного в точку касания . По т. Пифагора ВО²=ОК²+КВ²
(9-r)²=r²+3² ,81-18r+r²=r²+9 ,18r=72 , r=4 .