красным цветом обозначено боковое ребро призмы и равно оно 14 см
зеленым цветом обозначена высота проведенная из точки А в точку Н и состовляющая угол с плоскостью основания 90 градусов.
получается прямоугольный треугольник АА1Н с гипотенузой АА1. одна из теорем прямоугоьного треугольника гласит: катет лежащий против угла в 30 градусов равен половине гипотенузы. в нашем случае таким катетом является искомая высота АН и она равна 14/2=7см
конечно, это скрещивающиеся прямые, но угол между ними очень даже есть :).
самое простое решение - векторное.
Пусть куб имеет сторону равную 1.
Пусть вектора АD = i ; AB = j ; AA1 = k ;
Модули единичных векторов i j k равны 1, и скалярные произведения ij = ik = jk = 0; поскольку эти вектора перпендикулярны друг другу.
Обозначим вектор АВ1 = x ; AC = y;
Вектор x = j + k
Вектор АС = i + j ; откуда вектор y = k - (i + j);
Скалярное произведение yx = k^2 - j^2 = 0;
то есть эти прямые перпендикулярны, угол между ними 90 градусов
Есть и очень простое геометрическое решение.
Если соединить середины ребер AD (точка М) и В1С1 (точка К) то МК II AB1. Кроме того, МК проходит через центр куба, так же как СА1, поэтому искомый угол - это угол между МК и СА1, лежащими в одной плоскости. При этом сечение куба этой плоскостью МА1КС - это ромб (все стороны равны), а МК и СА1 - его диагонали, поэтому они взаимно перпендикулярны.
обозначим призму АВСDА1В1С1D1
красным цветом обозначено боковое ребро призмы и равно оно 14 см
зеленым цветом обозначена высота проведенная из точки А в точку Н и состовляющая угол с плоскостью основания 90 градусов.
получается прямоугольный треугольник АА1Н с гипотенузой АА1. одна из теорем прямоугоьного треугольника гласит: катет лежащий против угла в 30 градусов равен половине гипотенузы. в нашем случае таким катетом является искомая высота АН и она равна 14/2=7см
P.S. я не художник((( простите((
конечно, это скрещивающиеся прямые, но угол между ними очень даже есть :).
самое простое решение - векторное.
Пусть куб имеет сторону равную 1.
Пусть вектора АD = i ; AB = j ; AA1 = k ;
Модули единичных векторов i j k равны 1, и скалярные произведения ij = ik = jk = 0; поскольку эти вектора перпендикулярны друг другу.
Обозначим вектор АВ1 = x ; AC = y;
Вектор x = j + k
Вектор АС = i + j ; откуда вектор y = k - (i + j);
Скалярное произведение yx = k^2 - j^2 = 0;
то есть эти прямые перпендикулярны, угол между ними 90 градусов
Есть и очень простое геометрическое решение.
Если соединить середины ребер AD (точка М) и В1С1 (точка К) то МК II AB1. Кроме того, МК проходит через центр куба, так же как СА1, поэтому искомый угол - это угол между МК и СА1, лежащими в одной плоскости. При этом сечение куба этой плоскостью МА1КС - это ромб (все стороны равны), а МК и СА1 - его диагонали, поэтому они взаимно перпендикулярны.