Да, делит. Для этого нужно рассмотреть два треугольника, образованных средней линией и высотой. Пусть x - катет одного треугольника (маленького, являющегося частью большого), средняя линия равна z. Тогда катет большого треугольника, параллельный катету маленького, равен 2x. Маленький треугольник и большой подобны по 1 признаку (т.к. прямая, перпендикулярная одной из параллельных прямых, параллельна и второй, прямые параллельны, т.к. средняя линия параллельна стороне треугольника). Из подобия следует, что коэффициент подобия равен 1:2 => средняя линия делит высоту на две равные части.
1) Двугранные углы при основании это угол между двумя перпендикулярами, проведенными к стороне основания. Один такой перпендикуляр - это апофема боковой грани, второй - ее проекция. Проекция перпендикулярна боковой стороне по теореме о трех перпендикулярах. Из прямоугольного треугольника SOK ОК=10·сos 30°=10·(√3/2)=5√3 см DC=2·OK=10√3 см - длина стороны основания S(основания)=DC²=(10√3)²=100·3=300 кв см
2) Угол наклона бокового ребра- угол между этим ребром и его проекцией. Проекцией SB является ОB=DB/2 Треугольник SOB- прямоугольный равнобедренный SO=H=6·sin 45°=6·(√2/2)=3√2 см - высота OB=SO=3√2 см BD=2·OB=6√2 см- диагональ АВ=ВС=СD=AD=6 см- сторона основания
Один такой перпендикуляр - это апофема боковой грани, второй - ее проекция. Проекция перпендикулярна боковой стороне по теореме о трех перпендикулярах.
Из прямоугольного треугольника SOK
ОК=10·сos 30°=10·(√3/2)=5√3 см
DC=2·OK=10√3 см - длина стороны основания
S(основания)=DC²=(10√3)²=100·3=300 кв см
2) Угол наклона бокового ребра- угол между этим ребром и его проекцией.
Проекцией SB является ОB=DB/2
Треугольник SOB- прямоугольный равнобедренный
SO=H=6·sin 45°=6·(√2/2)=3√2 см - высота
OB=SO=3√2 см
BD=2·OB=6√2 см- диагональ
АВ=ВС=СD=AD=6 см- сторона основания