Бісектриса одного з кутів трикутника утворює з протилежною стороною кут 82°, а з бісектрисою одного з двох інших кутів- кут 55°. Вказати величину кута трикутника, який кратний десяти.
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
∠ALB = 120°.
Объяснение:
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
ответка
Задайте свой вопрос и получите ответ от профессионального преподавателя. Выберите лучший ответ.
Подготовка к ЕГЭ Подготовка к ОГЭ Подготовка к олимпиаде Геометрия Алгебра Решение задач
Задать вопрос
Все вопросы
Нонна
Математика 5 - 9 классы
13.12.2019 18:05
Дан ромб ABCD, точка O пересечения диагоналей AC и BD, короткая диагональ равна стороне ромба.
1) Угол между векторами BA−→ и BD−→− равен °;
2) угол между векторами CB−→− и DA−→− равен °;
3) угол между векторами AB−→ и CA−→− равен °;
4) угол между векторами AD−→− и DB−→− равен °;
5) угол между векторами OB−→− и OC−→− равен